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Abstract 

The goal of this thesis was to understand the learning process of convolutional neural 

networks with information theoretic concepts. Although the use of Deep Learning is booming 

in many real-world tasks, their internal processes of how they draw the results are still 

uncertain. In this paper, an information theoretic approach is used to reveal the typical 

learning patterns of a convolutional neural network. For this purpose, training samples, true 

labels, and estimated labels are considered to be random variables. The mutual information 

and conditional entropy between these variables are then studied using our proposed 

method. The results of the numerical experiments conducted reveal that information theory 

is an excellent tool with which to explain convolutional neural networks. The first outcome of 

the results is that each layer has a different effect on learning. The layers that need to be 

added to a neural network to gain desired learning level can be determined with the help of 

information theoretic quantities. Secondly, the optimum number of training epochs and other 

parameters can be determined with information theory. It is inferred from the results that 

show the information theoretic quantities graph is parallel to the training accuracy graph. 

Overall, the experimentations show that information theoretic approach can be utilised to 

explain convolutional neural networks. This study and related future studies can be 

considered the foundation for Explainable Machine Learning studies. 

 

 

 

 

 

 

 

 

 



 

Page | ii  
 

 

Table of Content 
CHAPTER 1 Introduction .......................................................................................................................... 1 

1.1 Background .................................................................................................................................... 1 

1.2 Research Aim and Objectives ........................................................................................................ 1 

1.3 Research Value .............................................................................................................................. 2 

1.4 Thesis Outline ................................................................................................................................ 2 

CHAPTER 2 Literature Review ................................................................................................................. 3 

2.1 Big Data Analytics .......................................................................................................................... 3 

2.2 Understanding Deep Neural Network ........................................................................................... 3 

2.3 Explainable Machine Learning ....................................................................................................... 4 

CHAPTER 3 Fundamentals of Information Theory .................................................................................. 6 

3.1 Information Entropy ...................................................................................................................... 6 

3.2 Joint Entropy.................................................................................................................................. 6 

3.3 Conditional Entropy ....................................................................................................................... 7 

3.4 Kullback-Leibler Divergence .......................................................................................................... 7 

3.5 Mutual Information ....................................................................................................................... 7 

3.6 Data Processing Inequalities.......................................................................................................... 8 

3.7 Fano’s Inequality ........................................................................................................................... 8 

CHAPTER 4 Information Theory for Explaining Deep Learning ............................................................. 10 

4.1 Information Bottleneck Principle and Deep Learning ................................................................. 10 

4.2 An Information-Theoretic View of Learning of Artificial Neural Networks ................................. 11 

CHAPTER 5 Understanding Convolutional Neural Networks via Information Theory .......................... 13 

5.1 Convolutional Neural Networks .................................................................................................. 13 

5.2 Experimentation Methodology ................................................................................................... 15 

5.3 Experimentation with MNIST Dataset ......................................................................................... 15 

5.3.1: Dataset .................................................................................................................................... 15 

5.3.2: Model Design and Training...................................................................................................... 16 

5.4 Experimentation with the Cifar-10 Dataset ................................................................................ 18 

5.4.1: Dataset .................................................................................................................................... 18 

5.4.2: Model Design and Training...................................................................................................... 19 

5.5 Calculation of Information Quantities ......................................................................................... 21 

5.5.1 Information Quantities of MNIST Images................................................................................. 21 

5.5.2 Information Quantities of Cifar-10 Images .............................................................................. 22 

CHAPTER 6 Results and Discussion ........................................................................................................ 24 



 

Page | iii  
 

6.1 Effect of Hidden Layers on Learning ............................................................................................ 24 

6.2 Effect of Training on Learning Process ........................................................................................ 25 

CHAPTER 7 Conclusion and Future Work Recommendations ............................................................... 27 

7.1 Introduction ................................................................................................................................. 27 

7.2 Limitations and Recommendations ............................................................................................. 27 

7.3 Summary...................................................................................................................................... 28 

Bibliography ........................................................................................................................................... 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page | 1  
 

CHAPTER 1 Introduction 

1.1 Background  

 
The field of artificial intelligence and machine learning have been developing rapidly over 
recent years. The success, especially in deep learning during the last decade, has been rapid 
with unpredictable achievements in international challenges. Deep learning algorithms have 
made remarkable progress on numerous machine learning tasks and dramatically improved 
the state-of-the-art in many functional areas ranging from visual image recognition to 
understanding languages from audio (Graves et al., 2013;  Zhang and LeCun, 2015; Hinton et 
al., 2012; He et al. 2015; LeCun et al., 2015). As a result of this success, deep learning models 
have been used in various application areas such as criminal justice, medicine, and finance.  
 
Despite their great success, there is still no comprehensive understanding of the optimisation 
process or the internal organisation of deep neural networks, and they are often criticised for 
being used as mysterious ”black boxes” (Alain and Bengio, 2016; Adadi and Berrada, 2018). 
Deep learning models usually contain millions of parameters and functions. People cannot 
understand this representation, and also cannot physically interpret the results of models. 
This lack of understanding can lead to a belief that the models are untrustworthy. Additionally, 
there is no way to know if the reasons behind the results are ill-formatted, biased, or even 
wrong, which can raise many ethical, financial, and legal issues. Studies on Explainable 
Machine Learning are currently attempting to provide explanation and solutions to these 
kinds of problems. Explainable Machine Learning models provide reasoning for the models’ 
results. 
 

1.2 Research Aim and Objectives 

 
Convolutional neural networks are in high demand as models for a multitude of computer 
vision tasks. Although they are used to solve a variety of problems, the learning processes of 
convolutional neural networks are still not transparent. In recent years, many studies have 
been undertaken to explain these models. However, the theoretical understanding of 
convolutional neural networks is still insufficient. 
 
With the motivation to make convolutional neural networks more intuitive, the aim of this 
thesis is stated as an attempt to understand the learning process of convolutional neural 
networks with information theory. This goal has been one of  attempting to answer two 
fundamental questions: What are the effects of hidden layers on learning of a convolutional 
neural network? and How does training affect the learning process of a convolutional neural 
network?. 

The research questions were investigated and studied in light of information theory. This idea 
was theoretically introduced and first proposed in Tishby’s research on deep learning and 
information theory (Shwartz-Ziv and Tishby, 2017; Tishby and Zaslavsky, 2015 ). Later, some 
other researchers also utilised this theory to understand deep neural networks (Balda, 
Behboodi and Mathar, 2018). In the context of this dissertation, the previously proposed 
method for analysing deep neural network was adopted to investigate the learning process of 
convolutional neural networks.  
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1.3 Research Value 

In this dissertation, a systematic method has been proposed to analyse the learning process 
of a convolutional neural network. By answering the research questions, the dissertation 
makes the following contributions: 

1) By calculating mutual information of individual layers, their effect on the learning process 
can be inferred from these quantities. 

2) By observing mutual information between input and output during training, the effects of 
the training on the learning process of the model can be examined. The results show that 
there is a parallelism between the information-theoretic approach and the mathematical 
approach when determining optimum training. 

 

1.4 Thesis Outline 

Beyond this introduction, this dissertation consists of six additional chapters. 

In Chapter 2, an extensive literature review comprising three subsections will be given. Firstly, 
pieces of literature on big data and analytics will be provided. Some vital work into the 
understanding of deep learning will be described in the second section. Finally, the concept of 
explainable machine learning will be introduced, and some of the relevant literature will be 
discussed. 

In Chapter 3, a description of fundamental information theory will be given to understand the 
results of this thesis. The reader is assumed to have prior basic probability theory knowledge, 
and no information theory is needed.  

In Chapter 4, a detailed review and explanations of some of the more critical literature 
mentioned in Chapter 2 will be given. Previously proposed methods for analysing deep 
learning via information theory will be introduced and explained in this chapter. 

In Chapter 5, the proposed method and experimental setups will be provided. Firstly, a brief 
introduction to convolutional neural networks will be given. Then, the steps to the proposed 
method required to understand the learning processes of convolutional neural networks via 
information theory will be explained. 

In Chapter 6, the results of experimentation and further discussion will be given. Firstly, the 
results that show how hidden layers affects the learning process of a convolutional neural 
network will be described. Later, inferences and discussions about the results will be made in 
the same section. The effects of training on learning will be illustrated and discussed in the 
second section. 

In Chapter 7, the work and results will be summarised in a series of concluding remarks, after 
which various ideas about possible future work will be given. 
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CHAPTER 2 Literature Review 

2.1 Big Data Analytics 
The term “big data” and such technologies that make use of it or benefit from it have been in 

existence for many years. Since the world entered the so-called “digital age”, huge amounts 

of data are generated through various means and from different sources every day. The 

generated data add to the collection of digital data which is now referred to as Big Data (Chen 

and Lin, 2014; Zhou et al., 2020). Accordingly, there are several descriptions and definitions of 

Big Data in the literature. For example, it is described in one paper as follows: 

“Big Data is the Information asset characterised by such a High Volume, Velocity and Variety 

to require specific Technology and Analytical Methods for its transformation into Value.” (De 

Mauro, Greco and Grimaldi, 2016) 

From the definition, it is inferred that Big data is not just about the size of the data. There are 

also other essential attributes of data that matter. Hence, generally, it is described by three 

main characteristics depicted as “3V”, i.e., Volume, Velocity and Variety (Sagiroglu and Sinanc, 

2013). The amount of data generated and collected is referred to as Volume. Velocity is the 

speed at which data is processed and collected. Variety refers to the diversity of different 

formats of data. Further, recent reports in the literature extend the above to the 5V model by 

adding two more features: Veracity and Value (Rao et al., 2018). 

Big Data has no value whilst it remains in its core form; its potential can only be realised when 

it is used to guide decision-making processes. So, fast and efficient processes are needed to 

obtain meaningful insights from this data in a process called Big Data Analytics (Gandomi and 

Haider, 2015). These analytics can be applied to various kinds of dataset such as text, audio, 

and visual using different analysis techniques. According to the McKinsey report, several 

methods based on multiple fields such as statistics, computer science, applied mathematics 

and economics can be utilised for big data analytics. These methods include data mining, 

statistical learning, A/B testing, Natural Language Processing and Machine Learning 

(McKinsey, 2011). Statistical methods have historically been one of the most frequently used 

methods for data analysis, as is currently used to analyse big data. Other researchers have 

examined the use of statistical learning techniques for data analysis (Hastie, Tibshirani and 

Friedman, 2009). Also, Wu et al. (2014) and Feng and Zhu (2016) have noted that data mining 

is a well-known method for big data analysis for different fields. Moreover, the state-of-the-

art Machine Learning algorithms which utilise statistical and artificial intelligence methods are 

used for big data analytics (Watson, 2019) 

2.2 Understanding Deep Neural Network 

Deep Learning, or so-called deep neural networks, is a subfield of machine learning inspired 

by the structure and function of brain neurons. The advantage of deep learning over the other 

types of machine learning is its scalable behaviour. Namely, the performance of deep learning 

models gets better as the amount of data used to train the model increases. The structure of 

deep neural networks consists of anything from several layers to millions of layers, which 

makes their mathematical explanation intractable. This nature of neural networks is thus 

somewhat “black box” in character (Castelvecchi, 2016).  
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Transparency which is aimed at a direct understanding of the model’s learning process can be 

said to be the opposite of the black box approach. When the Neural Network structure is 

considered, input-output relations and model design can be expressed mathematically so that 

these properties can thus be defined as being transparent. However, layer parameters, the 

number of layers, and non-linear properties are generally determined by traditional methods 

and heuristics. Since there is no optimisation of these parameters in a mathematical sense, 

the associated transparency is somewhat limited. In addition to these, because of the 

selection of hyperparameters such as learning speed, the batch size is also intuitive and has 

no transparent algorithmic structure, so these networks are not reproducible. Thus, efforts 

are being made to make deep neural networks more understandable and transparent. 

Post-hoc explainability techniques are generally applied to deep learning models to explain 

their decisions. This method aims to understand ow an already designed model (thus, it is also 

called post-modelling explainability) processes the information and gives the input (Roscher 

et al., 2020). These methods enhance the transparency of models that are not tractable for in 

terms of explainable models, such as with deep neural networks. Some basic approaches to 

achieving this goal include visual explanations, local explanations, and text explanations 

(Barredo Arrieta et al., 2020). Zeiler and Fergus (2013) have tried to explain convolutional 

neural networks with a novel visualisation technique that gives information about 

intermediate layers. Also, Bae, Moon and Kim (2019) have introduced a textual explanation 

deep learning model for self-driving cars to obtain safe autonomous devices.    

Besides computer science and statistical methods, some other techniques and procedures can 

be adopted to explain deep learning models. Information theory of communications systems 

has recently become one of the most referenced methods. The work of Ziv and Tishby (2014), 

“Opening the Black Box of Deep Learning”, as based on the Information Bottleneck Method 

(Tishby, Pereira and Bialek, 2000), has led to a focus on explaining neural networks via 

information-theoretic quantities such as mutual information. Other researchers have also 

investigated and discussed this approach (Saxe et al., 2018; Gabrié et al., 2019). Moreover, Yu 

and Principe (2019) and Yu et al. (2020) have introduced a new matrix-based Renyi’s  -

entropy technique to analyse the information flow in stacked autoencoders and convolutional 

neural networks. Furthermore, Balda, Behboodi and Mathar (2018) have adopted the 

information-theoretic method and incorporated it with generalisation error and suggest 

learning process of neural networks. 

 

2.3 Explainable Machine Learning 

Machine Learning is a part of research into Artificial Intelligence that aims to give computers 

the ability to learn, and make and improve predictions based on data (Gilpin et al., 2019). 

There are several types of machine learning algorithms depending on their learning style, i.e., 

supervised learning, unsupervised learning, and semi-supervised learning. Nowadays, AI 

systems based on machine learning have been remarkably successful at various computer-

related tasks (He et al., 2016), to understand natural language (Cho et al., 2014), and to play 

games such as Go (Silver et al., 2016). Most of machine learning models such as deep neural 

networks are too complicated for people to understand easily due to their non-intuitive and 
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opaque nature (Gunning and Aha, 2019). Hence, this lack of explainable of Machine Learning 

models acts as a barrier to the adoption of these models into such fields such as law, medicine, 

and transportation. For example, knowing why a car performed a particular action is vitally 

important when designing self-driving cars (Doshi-Velez and Kim, 2017). As machine learning 

methods started to be used to make important predictions at critical points, the demand for 

transparency from the stakeholders of AI began to increase (Preece et al., 2018). Thus, many 

researchers are now studying how to explain machine learning models. The aim of this 

research, which is generally called explainable machine learning, is to help people understand 

and trust machine learning models in an intuitive manner.  

Explainable machine learning is such a new and broad topic for the research community that 

it is yet to be formally defined. Gilpin et al. (2019)  define it as the “Science of understanding 

what a model did or might have done” and Murdoch et al. (2019) as the “Use of machine 

learning models for the extraction of relevant knowledge about domain relationships 

contained in data.” There is a range of reasons why some form of an explanation of a machine 

learning model is desirable. Adadi and Berrada (2018) reported that justifying decisions, 

enhancing control, improving models, and discovering new knowledge are four fundamental 

reasons behind this desire. To achieving this, some basic questions must be answered: How 

does the model work? Which inputs or features of the data are the most influential in 

determining an output? and What is the optimum mathematical representation of this model? 

Explainable models can be divided into three categories according to the purpose of 

motivating the associated research. These are explainability, interpretability and 

transparency. The first two are mostly about making a model, its internal process, and its 

outputs intuitively humanly understandable. Transparency is about understanding the process 

of how the model or algorithm learns from the data (Lipton, 2018). 

A model can be considered transparent if it is understandable by itself. The transparency of a 

model can be measured in two different ways. Easily understandable models can be explained 

by methods during design. However, the explanations of some models are not at first 

tractable. For example, the very first machine learning models based on probabilistic 

mappings such as Decision Trees, Logistic Regression and Clustering are convenient in terms 

of their explanations. Still, Deep Neural Networks are very hard to understanding (Barredo 

Arrieta et al., 2020), so recently many pieces of research have begun to consider the learning 

behaviour of neural networks to make them more transparent. 
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CHAPTER 3 Fundamentals of Information Theory 
Information theory is concerned with measuring information related to distributions as based 

on probability and statistics. It was initially proposed and developed by Claude Shannon for 

communication system design. This theory arises from the quest to determine how much 

information a signal contains.  

In this chapter, some basic definitions and theorems of information theory that are needed to 

understand the results of this thesis are presented. The definitions, theorems, and formulae 

in the remainder of this chapter are mainly adopted from Shannon’s famous paper “A 

Mathematical Theory of Communication” (Shannon, 1948) and the book “Elements of 

Information Theory” (Thomas and Cover, 1991).  

3.1 Information Entropy 

Information entropy or basically “entropy” is the measure of the uncertainty of a random 

variable that has a probability distribution. This quantity is described by the probability 

distribution of the random variable 𝑝(𝑥). Generally, entropy is a quantity that depicts how 

much information an event or random variable contains.  

Definition:  Let X be a discrete random variable with a probability mass function 

 𝑝(𝑥) = Pr{𝑋 = 𝑥} , 𝑥 ∈ 𝑋. The entropy H(X) of a variable X is defined by; 

    𝐻(𝑋) =  − ∑ 𝑝(𝑥) log 𝑝(𝑥) 𝑥∈𝑋 ,                                                 (3.1) 

 

The unit of information entropy is measured in “bits” or “not” depends on the base of the 

logarithmic function being two or 𝑒 respectively. 

 

3.2 Joint Entropy 
In the case of two different random variables, the entropy of these values can be calculated 

in a similar manner to that of calculating entropy a random variable. This term, called joint 

entropy, gives the overall uncertainty of these two random variables. 

Definition: The joint entropy H(X,Y) of a pair of discrete random variables with a joint 

distribution 𝑝(𝑥, 𝑦) is defined as: 

𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦).     (3.2)

𝑥,𝑦
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3.3 Conditional Entropy 

Conditional entropy is a measure of the amount of information required to determine the 

outcome of a random variable Y given the value of the random variable of X. 

Definition:  The conditional entropy of Y given X, H(Y|X), is defined as; 

𝐻(𝑌|𝑋) = − ∑ 𝑝(𝑥)𝐻(𝑌|𝑋 = 𝑥),

𝑥,𝑦

                             (3.3) 

            =  − ∑ 𝑝(𝑥)𝑥  ∑ 𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)𝑦  ,         (3.4)  

            =  − ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)𝑥,𝑦 .                        (3.5)  

From the definitions of joint entropy and conditional entropy, it can be seen that the 

entropy of two random variables is the summation of the marginal entropy of one and the 

conditional entropy of the other. This specification is called the chain rule of information 

entropy, and the proposed theorem is explained below. For the proof of this theorem, the 

reader is referred to the sourcebook mentioned above. 

Theorem 3.1:  𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌|𝑋) = 𝐻(𝑌) + 𝐻(𝑋|𝑌).                     (3.6) 

3.4 Kullback-Leibler Divergence 

Kullback-Leibler divergence, also called relative entropy, is the measure of the distance 

between two different distributions over the same random variable. This quantity depicts how 

different these two distributions are.  

Definition: The Kullback-Leibler distance between two probability distributions 𝑝(𝑥) and 𝑞(𝑥) 

is defined as 

𝐷(𝑝||𝑞) = ∑ 𝑝(𝑥)𝑙𝑜𝑔

𝑥

𝑝(𝑥)

𝑞(𝑥)
.                                               (3.7) 

The relative entropy is always non-negative and is zero if the only p = q. Moreover, it is an 

asymmetric function, so it does not give an accurate measure of the distance between 

distributions. Thus, it is simpler to think of “relative entropy” rather than the distance between 

distributions. 

3.5 Mutual Information 
Mutual information describes the amount of information that one random variable contains 

about another.  

Definition: The mutual information of two random variables, 𝐼(𝑋; 𝑌), is defined as 

   𝐼(𝑋; 𝑌) =  ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦 ,                       (3.8) 

This is the reduction in the uncertainty of one random variable due to the knowledge one 

has of the other. Thus, mutual information can be calculated by entropy quantities as 

   𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋), (3.9)   
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From equation 3.9, it can be seen that the notion of mutual information is symmetric. Thus, 

X gives as much information about Y as Y gives about X. The relationship between these 

quantities is exhibited in Figure 3.1. From this figure, it can be understood that mutual 

information is the intersection of the two random variables’ information. 

 

Figure 3.1 Relationship between entropy and mutual information  

(Source: Thomas and Cover, 1991) 

 

 

3.6 Data Processing Inequalities 
Data processing inequality is an information-theoretic concept that states that the no physical 

processing of data can improve its information content. It can be said that the information 

that a variable contains cannot be increased by post-processing. 

Definition: Let random variables X, Y, Z form a Markov Chain in that order, as denoted 

XYZ, and the conditional distribution of Z depends only on Y and is conditionally 

independent of X.  In this setting X, Y and Z form a Markov chain. This resulted in a theorem 

that no processing of Y can increase the information Y contains about X.  

This is formulated as 

Theorem 3.2: 𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑍) (𝐷𝑎𝑡𝑎 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)  

 

3.7 Fano’s Inequality 

Fano’s inequality is an information-theoretic lemma that gives the relationship between 

categorisation error and average information lost in a channel. It is utilised to find a lower 

bound on the error probability of any decoder.  
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Definition: Let X be a random variable with finite outcomes in 𝜃. Let 𝑋̂ = 𝑔(𝑌) be the 

predicted value of X for a  deterministic function. Then, Fano’s inequality can be defined as 

𝑝𝑒 ≡ 𝑝(𝑋̂ ≠ 𝑋) ≥
𝐻(𝑋|𝑌) − 1

log|𝜃|
,                                  (3.10) 

where 𝑝𝑒 is the generalisation error of function and 𝐻(𝑋|𝑌) is the conditional entropy. 
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CHAPTER 4 Information Theory for Explaining Deep Learning  
Deep learning models have recently begun to show excellent performance for real-world data 

challenges. This success has attracted people to apply these models to various tasks. However, 

basic questions such as the optimal architecture of the model, the number of required layers, 

or the number of neurons have not yet been adequately answered (Tishby and Zavlavsky, 

2015). Thus, many researchers are also trying to understand the theory behind these models. 

Utilising Information Theory to explain the nature of deep neural networks has attracted the 

attention of many researchers in recent years. 

The literature mentioned in section 2.3 has provided us with an intuitive knowledge of how 

information theory can be used to explain deep learning. Many new studies are being 

conducted on these necessary studies. In this section, reviews of the essential research that 

forms the basis of this thesis will be provided. 

4.1 Information Bottleneck Principle and Deep Learning 

The Information Bottleneck Principle was introduced by Tishby et al. (1999) to extract the 

relevant information that a random input variable X contains about random variable Y. This 

principle is intended to find the optimal representation of X that contains the maximum 

relevant information about Y, and that is compressed maximally by discarding all non-useful 

information; this process is used to find the best trade-off between accuracy and compression. 

For general compression process, the relevant part of X concerning Y is denoted by T. This 

compression has the assumed form of a Markov Chain 𝑌 → 𝑋 → 𝑇 and minimises the mutual 

information 𝐼(𝑋; 𝑇) under the constraint on 𝐼(𝑇; 𝑌) due to the data processing inequality 

defined by Theorem 3.2. The information bottleneck can be seen as a rate-distortion measure 

which is defined as 

𝐷𝐼𝐵 = 𝐸[𝑑𝐼𝐵(𝑋, 𝑇)] = 𝐼(𝑋; 𝑌|𝑇),                                               (4.1) 

where D is the Kullback-Leibler divergence, which is defined in Section 3.6. 

The idea above was adopted to analyse the learning behaviour of neural networks by Tishby 

and co-workers’ recent papers (Tishby and Zavlavsky, 2015; Shwartz-Ziv and Tishby, 2017). In 

this context, deep learning is taken as a question that is representative of a learning problem. 

The goal of a supervised learning algorithm is to capture as much relevant information from 

the input variables about the output variables during training as possible. So, it can be said 

that the layers of the deep neural network form a Markov Chain, and the overall model can 

be seen as an encoder/decoder structure (see Figure 4.1). The Markov Chain feature is due to 

every hidden layer, only having access to the output of previous layers as its input. Hence, 

data processing inequalities can be used in neural network layers. This is defined in 

mathematical terms as 

𝐼(𝑋; 𝑌) ≥ 𝐼(𝑇1; 𝑌) ≥ 𝐼(𝑇2; 𝑌) ≥ ⋯ ≥ 𝐼(𝑇𝑘; 𝑌) ≥ 𝐼(𝑌̂; 𝑌),               (4.2) 

𝐻(𝑋) ≥ 𝐼(𝑋; 𝑇1) ≥ 𝐼(𝑋; 𝑇2 ≥ ⋯ ≥ 𝐼(𝑋; 𝑇𝑘) ≥ 𝐼(𝑋; 𝑌̂).                   (4.3) 

These formulations imply that the mutual information between the variables decreases when 

moving across the network towards the output layer. 
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Figure 4. 1 A Deep Neural Network Structure visualised as an encoder and decoder (Schwartz-Ziv and Tishby, 
2015) 

Hence, they analysed deep neural networks by measuring the information quantities in each 

layer’s representations, X, T, Y, where X is the input variable, Y is the label and T is the hidden 

layers’ variables on the Information Plane (IP). The goal of the network then is to optimise the 

Information Bottleneck (IB) trade-off between compression and prediction, successively, for 

each layer. So, with the implementation of the IB method to deep neural networks, they 

optimally learn to extract the most efficient informative features with the most compact 

architecture (i.e., the optimum number of layers and units). Besides, they are supposed that 

train a model with the stochastic gradient descent optimisation through two distinct phases: 

the fitting phase, and the compression phase. Initially, the model gets into the fitting phase 

where 𝐼(𝑋; 𝑇) and 𝐼(𝑇; 𝑌) increase together, along with the training iterations. Later, the 

model goes into the compression phase where both  𝐼(𝑋; 𝑇) and 𝐼(𝑇; 𝑌) decrease. It is 

suggested in the paper that this compression phase is a good indicator of the excellent 

generalisability of deep neural networks.  

4.2 An Information-Theoretic View of Learning of Artificial Neural Networks 

In light of Tishby’s paper, Balda et al. (2019) also attempted to use information-theoretic 

quantities to reveal typical learning patterns of neural networks in their recent study. They 

investigated the mutual information and conditional entropy of the input, output, and true 

labels. What makes mutual information so interesting is that, unlike correlation, it can pick up 

non-linear dependencies between variables. Given two random variables X and Y, it looks at 

the divergence of their probability distribution 𝑝(𝑥, 𝑦) from 𝑝(𝑥)𝑝(𝑦) to determine how 

dependent - or independent - they are.  

Then, from Fano’s inequality, an upper bound is derived for the conditional entropy of the 

estimated labels given the true ones in terms of the error probability. The upper bound is 

defined as follows: 

Definition: For a neural network denoted as 𝑔𝜃 , and the output denoted as 𝑦̂ = 𝑔𝜃(𝑥) . The 

conditional entropy quantities upper bounded by the generalisation error 𝑅(𝑔𝜃). 
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max{𝐻(𝑌|𝑌̂), 𝐻(𝑌̂|𝑌)} ≤ 𝜑(𝑅(𝑔𝜃)),                                                     (4.4) 

For experimentation, they used three different datasets: the MNIST handwritten image 

dataset, the Cifar-10 dataset, and the Spirals dataset. For each dataset, they used a different 

model with different hyperparameter settings. It can be seen from Figure 4.2 that regardless 

of the activation function or dataset used, the learning process consists of two phases. In the 

first phase, 𝐼(𝑋; 𝑌)̂  and 𝐻(𝑌̂|𝑌) increase together. The increase means that the neural 

network learns mostly about input distributions. This behaviour continues to a specific value 

of mutual information, then the second phase starts (this stage is referred to as non-

discriminative). In the second phase, 𝐻(𝑌̂|𝑌) is minimised through the epoch. This decrease 

indicates that the neural network learns information about true labels (this stage is referred 

to as the discriminative). It can also be seen from Figure 4.2 that conditional entropies 

approach the bounds given by Equation 4.4. 

The figures show that in well-trained networks, conditional entropy and expected errors 

approach their theoretical limits. Hence, it is suggested that mutual information, conditional 

entropy and expected error can serve as a method for verifying the correct learning of deep 

neural networks. 

 

 

 

  

Figure 4.2 Information theoretical quantities during training 
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CHAPTER 5 Understanding Convolutional Neural Networks via 

Information Theory 
Convolutional neural networks (CNNs) have been some of the most influential innovations in 

the field of computer vision. In contrast, whilst there are efforts to understand deep learning, 

the studies working on convolutional neural networks are still insufficient. Within the scope 

of this thesis, the learning process of CNNs will be analysed for image classification tasks. 

In this chapter, a brief introduction is first given for CNNs. Then, the methods followed during 

the experiments are explained. Last, the learning process for CNNs is investigated with 

information-theoretic quantities in the vision of the studies presented in the previous chapter.   

5.1 Convolutional Neural Networks 

CNNs are used to process data that has a grid-like topology. This model has been beneficial 

for working on two-dimensional image data. The model was introduced and proposed by 

LeCun and Bengio (1995). Goodfellow, Bengio, and Courville stated in their book that these 

models could be seen as a successful application of studies into the brain to those of machine 

learning implementations (2017). CNNs are particularly useful at finding patterns in images to 

recognise objects for computer vision tasks. CNNs are beneficial due to a number of 

breakthrough features for processing data: they eliminate the need for manual feature 

detection due to the ability to learn directly from an image. 

Generally, CNNs are comprised of four principle layer types: the convolution layer, rectified 

linear unit layer, pooling layer, and fully connected layer. An example of a CNN architecture is 

illustrated in Figure 5.1. 

 

 

Figure 5.1 Basic CNN architecture for image classification tasks (Mathworks, 2018) 

 

The first layer that takes images as input is the convolutional layer. The name comes from its 

operation name, “convolve”. This layer convolves the input with predefined kernels (filters) 

and creates feature maps of the input. Filters slide over the input matrix and every time 
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multiplication of image region and filter being output. An example of a convolution operation 

can be seen in Figure 5.2. ReLu layers are usually implemented on convolution layers that 

mapped negative values of feature maps to zero and make training faster and more effective. 

Also, the ReLu layer ensures the non-linearity of the network.  

 

Figure 5.2 Illustration of the convolution operation 

Pooling is a process of downsampling the feature map on CNN. The pooling layer is a new layer 

that is added right after the convolutional layers after ReLu (activation) has been applied. This 

layer extracts a particular value from a set of values. Two of the pooling layers’ types are the 

most well-known: the Max Pooling Layer, which takes the maximum value of the predefined 

matrix, and the Average Pooling Layer, which takes the average of the defined matrix values. 

This layer is useful for improving computation time by reducing the size of the output matrix. 

An example of a pooling operation is shown in Figure 5.3. 

 

 

Figure 5.3 An example of an average pooling layer operation 

In the end, fully connected layers are added to the network to make the classification. In this 

layer, all neurons are connected like other neural networks. The matrix-shaped outputs are 

flattened before the fully connected layer to make it convenient to feed the layer. This layer 

computes the class probability scores and gives N-dimensional vectors that belong to the N 

number of classes. 
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5.2 Experimentation Methodology 

The Cifar-10 and MNIST datasets are have been selected and trained for two different CNN 

models in this thesis. The development of the test setup consists of five main stages:  

1) The dataset to be used for analysis is loaded. 

2) A convolutional neural network model is designed and compiled. 

3) While the compiled model is being trained, the network weights are saved after every 

epoch. 

4) The models selected for visualising are rerun and the outputs of hidden layers extracted 

and assigned to the predefined lists. 

5) Finally, from these outputs, information quantities are calculated and plotted. 

All experiments were carried out in the Keras Library with a Tensorflow backend. The high-

level flowchart of the experimental process can be seen in Figure 5.4. 

 

 

Figure Hata! Burada görünmesini istediğiniz metne 0 uygulamak için Giriş sekmesini 
kullanın.4 Development pipeline of the proposed method 

5.3 Experimentation with MNIST Dataset 

Firstly, the training process for the convolutional neural network for MNIST classification is 

analysed for the proposed testing method. 

5.3.1: Dataset 

The MNIST dataset is a modified subset of the National Institute of Standards and Technology 

database. This dataset contains 60,000 grey-scale images of handwritten digits represented 

by 28 x 28 pixels. The task is to classify a given picture of a handwritten digit into one of 10 

classes representing integer values from 0 to 9, inclusive. Key specifications and examples of 

the dataset can be seen in Table 5.1 and Figure 5.5, respectively. 

 

Table 5.1 MNIST Dataset Specifications 

Data Type Image data 

Size of each image 28 x 28 image pixel values 

Number of channels One channel grey-scale 

Number of classes Ten classes 

Number of the training set 50,000  

Selected 
Data 

Loading

Model
Design and 

Training

Running of 
Saved 

Models

Extracting 
Layers' 

Outputs

Calculating 
Information 
Quantities
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Number of the test set 10,000 

 

 

 

Figure 5.5 Examples of digits in the MNIST dataset 

5.3.2: Model Design and Training 
To classify the MNIST dataset, a nine-layer structure convolutional neural network model is 

designed. The model is based on a well-known VGG (Simonyan and Zisserman, 2014) model. 

This model was chosen due to its good performance with the Image Net challenge. The 

modular structure of the model makes it easy to implement. The architecture involves two 

convolution blocks and one fully connected block. The convolution block consists of two 

convolution layers with small 3 x 3 kernels followed by a Max Pooling layer. Also, each 

convolution layer was implemented with a ReLU (Nair and Hinton, 2010) activation function. 

After two convolution blocks, a fully connected layer is added to the model to make the 

classification. The classification is achieved via the softmax function.  A summary of the 

designed model can be seen in Figure 5.6. 
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Figure 5.6 A summary of designed Model 1 

For optimisation, the “rmsprop” algorithm was selected with a categorical cross-entropy loss 

function to train the network. Then, the model was compiled and run for one hundred epochs. 

The model’s learning curves, as produced during the training period, are plotted in Figure 5.7. 

From the figure, it can be seen that the model converged around 15-20 epochs. After that, it 

starts to over fit the data. The accuracy and loss table of the best epoch of the trained model 

is given in Table 5.2. Each epoch’s weight is saved during the training. 

 

Table 5.2 Accuracy and loss values for Model 1’s best epoch 

 Training Set Validation Set 

Accuracy 0.9990 0.9936 

Loss 0.0036 0.0268 
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Figure 5.7 Learning curves for designed Model 1 

 

 

5.4 Experimentation with the Cifar-10 Dataset 

       5.4.1: Dataset 
Cifar-10 is another popular dataset that is commonly used for computer vision tasks. This 

dataset consists of 60,000 raw images chosen from 80 million small-sized photos. In the 

dataset, ten classes represent the contained objects. These objects are listed as aeroplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each image in the dataset 

represents one class of objects with a 32 x 32 image pixel matrix. In this experiment, 50,000 

samples were used for training and 10,000 for testing. Some important features and examples 

of the dataset are shown in Table 5.3 and Figure 5.8, respectively.  

Table 5.3 CIFAR-10 Dataset Specifications 

Data Type Image data 

Size of each image 32 x 32 image pixel values 

Number of channels Three channels RGB 

Number of classes Ten classes 

Number of the training set 50.000  

Number of the test set 10.000 
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Figure 5.8 Cifar-10 dataset examples 

        

 

5.4.2: Model Design and Training 

A new model for training the Cifar-10 dataset was designed. This new model otherwise has a 

similar structure to the previous one but, by contrast, the ReLU activation functions are not 

implemented with a convolution layer but are added separately immediately after every 

convolutional layer. This has done due to realise the effects of non-linear activations on 

learning. The overall model is composed of two convolutional blocks, followed by a fully 

connected layers. The classification is performed in the fully connected layer via the softmax 

function.  A summary of the designed model can be seen in Figure 5.9. 
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Figure 5.9 Summary of designed Model 2 

 

The model optimised with the Stochastic gradient descent algorithm with learning rate 𝑙𝑟 =

0.01. SGD was selected due to its superior generalisation performance (Wilson, 2017). Also, 

the accuracy of this network was calculated using the categorical cross-entropy loss function 

due to it being beneficial in multiclass classification. The network was compiled and run for 

two hundred epochs. The learning curves of the model as produced during training can be 

seen in Figure 5.10. From the figure, it can be seen that the network had converged at around 

the 75th epoch; after that, it began to over fit the data. The accuracy and loss table of the best 

epoch for the trained model is given in Table 5.4. 

 

 

Table 5.4 Accuracy and the loss values of Model 2’s best epoch 

 Training Set Validation Set 

Accuracy 0.5465 0.5568 

Loss 1.28 1.2598 
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Figure 5.10 Learning curves for designed Model 2 

 

5.5 Calculation of Information Quantities 
In this thesis, information-theoretic quantities are used to understand the behaviour of 

convolutional neural networks. to calculate these quantities, all representations of the input 

samples and layers’ outputs are considered to be random variables. Then, for each 

experiment, the mutual Information 𝐼(𝑋; 𝑇) and entropy 𝐻(𝑋) of the investigated layers were 

calculated empirically by Shannon’s formulations. 

The computing algorithm can be defined as: 

Step 1) Representations, i.e., input image matrices or output tensors, the of investigated layer 

output and input samples, are converted to a one-dimensional array. 

Step 2) Each unique value in the previously generated arrays and the frequencies of those 

values are counted. Then, from these counts, the occurrence probability of each value is 

calculated. 

Step 3) From the probabilities obtained in Step 2, the Shannon’s entropy and mutual 

information of variables is computed. 

To make it intuitively understandable, the calculations of two samples in the MNIST and Cifar-

10 datasets are shown as examples.  

5.5.1 Information Quantities of MNIST Images  
Firstly, the normalised histograms of the two randomly selected images from the MNIST 

dataset are plotted in Figures 5.11 and 5.12. The histograms show the probability of each pixel 

value belonging to the sample images. Because of the grey-scale nature of the dataset, it can 

be seen that pixel values are concentrated at 0 and 1. This indicates that in the MNIST images, 
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most bits are either brighter (represented by pixel value of 255) or darker (represented by a 

pixel value of 0). 

 

Figure 5.11 The histogram of  selected Image 1             Figure 5.12 The histogram of selected Image 2 

Then, from the probability values of the pixel information, theoretical quantities such as 

entropy, mutual information, and conditional entropy are calculated empirically. The results 

of these calculations are shown in Table 5.5.  

Table 5.5 Calculated information quantities for sample MNIST images 

The entropy of Image 1, H(X): 1.7383348383366406 

The entropy of Image 2, H(Y):   1.5905442413028457 

Mutual Information of Images, I(X;Y):   1.5400207334952398 

Conditional Entropy of Images, H(X|Y) :  0.19831410484140077 

Conditional Entropy of Images, H(Y|X) : 1.7888583461442464 

 
It can be seen from histograms of the selected images that the probability distributions are 

approximately the same. Further, it can be inferred that the amount of uncertainty is relatively 

low due to the black and white structure. Thus, the amount of entropy was expected to be 

low. The fact that entropy values meet expectations gives some assurance about the 

appropriateness of the calculation method. Moreover, it can be seen that mutual information 

is the subtraction of conditional entropy from marginal entropy, which demonstrates the 

compatibility of the method used with Equation (3.9). 

5.5.2 Information Quantities of Cifar-10 Images 
The same procedure as above was again implemented for the Cifar-10 dataset. The histograms 

of two randomly selected sample images are shown in Figure 5.13 and Figure 5.14. From the 

figures, it can be seen that the images that the Cifar-10 dataset contains are somewhat 

different in nature to the MNIST samples. This is the result of the RGB channel representations 

of the images. RGB representation allows the use of all pixel values and allows the image to 

be represented with colours. Thus, the probability distribution of the pixel values is more 

invariant than the MNIST images. 
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Figure 5.23 Histogram of selected Image 1                         Figure 5.14 Histogram of selected image 2 

 

In the second stage, the information-theoretic quantities of the selected two images from 

Cifar-10 dataset were calculated. These results can be seen in Table 5.6. The entropy values 

calculated are approximately the same for each of the images. The definition of entropy 

indicates that the entropy of a variable returns the minimum number of bits required to 

represent that variable. Generally, an 8-bit representation is used for images. The computed 

entropy values being approximately equal to 8 indicates the reliability of the empirical method 

used. In addition, the mathematical calculation of mutual information from entropy and 

conditional entropy also conform to Equation (3.9). 

Table 5.6 Calculated information quantities for the sample Cifar-10 images 

The entropy of Image 1, H(X): 7.250533790510763 

The entropy of Image 2, H(Y):   7.184727136961712 

Mutual Information of Images, I(X;Y):   6.958058843859936 

Conditional Entropy of Images, H(X|Y) :  0.2924749466508274 

Conditional Entropy of Images, H(Y|X) : 0.22666829310177583 
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CHAPTER 6 Results and Discussion 
This chapter contains the results of the proposed methodology experimentation conducted 

to answer the research questions:  

Research Question 1: What is the effect of hidden layers on the learning of a convolutional 

neural network? 

Research Question 2: How does training affect the learning behaviour of a convolutional 

neural network? 

These research questions were answered through the experimentation. The learning 
behaviour of the convolutional neural networks was investigated via information theory 
during the training of the classification tasks. During the experimentation, mutual Information, 
𝐼(𝑋; 𝑇), between the input and output of the layers was calculated.  As mentioned in Chapter 
5, the layers in the network were considered to be a single variable and the mutual 
information between each layer with the input and labels were calculated from those 
variables.   
 
In the remainder of this chapter, the results and discussions will be given. In each of these 
sections, studies into each particular research question and the discussion of their results will 
be given. 
 

6.1 Effect of Hidden Layers on Learning  

To understand the effect of hidden layers on learning, two designed models were used with 
two different datasets, as explained in Chapter 5. The results obtained for the MNIST and Cifar-
10 experimentation setups are illustrated in Figure 6.1-a and Figure 6.1-b, respectively. The 
mutual information, 𝐼(𝑋; 𝑇), between the input and the output of the layers are calculated 
and plotted in these figures. In the context of study, the mutual information between input 
and output was calculated by considering the theorem 𝐼(𝑋; 𝑇) = 𝐻(𝑇), where the variable 𝑇 
is the deterministic functional of X. This assumption was made because it is known that deep 
learning models are deterministic (Wu, 2014). With these graphs, one can monitor how the 
information-theoretic quantities change with the hidden layers. The compliance of the 
calculated and plotted quantities with the data processing inequality theorem, as introduced 
in Chapter 3, will be analysed and discussed. 
 

One can interpret from the results that convolutional neural networks do not follow a 
monotonic learning process. The influence of individual layers and the overall layer behaviour 
varies from model to model. Each layer has an increasing or decreasing impact on mutual 
information. In both figures, it is clear that dropout and flattening of layers has no apparent 
effect on learning. It was thus inferred that most learning takes place in the fully connected 
layer, which actually fits the definition of a convolutional neural network. In the convolutional 
neural network, convolutional blocks are used to extract features from the image. The fully 
connected layers are added to make the classification. The experimental results also confirm 
this situation.  
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The convolutional neural network was investigated with regard to whether it satisfied data 
processing inequality or otherwise. In the case of a feedforward neural network, the 
Markovian structure and data processing inequalities across layers are generally accepted 
(Schwartz-Ziv and Tishby, 2017; Balda, Behboodi and Mathar, 2018). In a previous study, it 
was stated that this can also be seen in convolutional neural networks, despite the calculation 
limits (Yu et al.,2020). However, in tests performed with the proposed approach in this thesis, 
there was no DPI between the layers for convolutional neural networks. Hence, the 
investigation of data processing inequality theory for convolutional neural networks could be 
conducted in future related studies. 
 

  

Figure 6.1-a      Figure 6.1-b 

Figure 6.1- Mutual information between input and output of layers, I(X;T). These two graphs 
reflect the results of the situation where 1000 MNIST images are sent to the network. 

Figure 6.1-b Entropy and mutual Information along the layers are plotted in this figure. The 
figure is plotted for 1000 Cifar-10 images as the input size. 

 

6.2 Effect of Training on Learning Process 
Mutual information quantities between the input and output 𝐼(𝑋; 𝑇) and between the output 

and true labels 𝐼(𝑇, 𝑌) were observed during the training of the two models. These quantities 

were investigated to identify training steps with regard to the amount of mutual information. 

This observation will offer a degree of insight about learning of the convolutional neural 

network. The results of this experimentation are visualised in Figure 6.2 and Figure 6.3.  

In Figure 6.2, it can be seen that the mutual information shows a decreasing trend during the 

training epochs. Although there is a slow decrease until the network converges, there is a 

sharp decrease at the onset of overfitting. The overfitting behaviour of the network can be 

seen from the accuracy graph of the network, which was presented in Chapter 5. It can be 

inferred that the change of an information-theoretic quantity is parallel to the learning 

process of the network. As a result, the optimum training epoch number can be determined 

by observing the information-theoretic quantities. 
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However, it can be seen from Figure 6.3 that mutual Information quantities, 

𝐼(𝑋; 𝑇) 𝑎𝑛𝑑 𝐼(𝑇; 𝑌) do not change during the training for the Cifar-10 dataset and model. At 

first sight, this might be considered a calculation problem. The algorithms and results of every 

step are checked individually and detailed. The outputs and the entropy of the outputs are 

calculated for every epoch. It was then realised that the problem is not one of calculating 

mutual information. The results show that the network outputs have the same uncertainty 

during the entirety of the training. It was observed that although the probabilities of the class 

vector changed throughout the training, the amount of uncertainty (entropy) remained the 

same. This issue or problem is unclear, and one of the open cases that need to be investigated 

in future studies. 

 

 

Figure  6.2 Mutual information between input and output of model 𝐼(𝑋; 𝑇) and mutual 
information between the output of the model and true labels 𝐼(𝑌; 𝑇) as plotted during the 

training epochs. 
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Figure 6.3 The mutual information quantities I(X;T), and I(Y;T) are plotted for Cifar-10 images 
sent to the network.  

 

 

CHAPTER 7 Conclusion and Future Work Recommendations 

7.1 Introduction  

The main aim of this dissertation was to understand the learning process of convolutional 

neural networks via information theory. During the research, information theoretic quantities 

were utilised to explain the CNNs according to the research questions. As a result of the study, 

the effects of hidden layers and training on learning could be stated. In the thesis, a new 

method for calculating information theoretic quantities of neural network parameters were 

proposed. During the study, numeric experiments were carried out using the suggested 

method. 

The first research question posed in the Introduction was “What are the effects of hidden 

layers on learning of a convolutional neural network?”. This question was investigated by 

observing mutual information between the input and layer outputs. The results showed that 

each individual layer has a different effect on learning. The layers that need to be added to a 

neural network to ensure the desired learning level can be determined with the help of 

information theoretic quantities. 

The second research question considered was “How does training affect the learning process 

of a convolutional neural network?”. The results of experimentation showed that the 

information theoretic quantities graph was parallel to the training accuracy graph. It can be 

thus interpreted that the optimum number of training epochs and other parameters can be 

determined with information theory. The results of all the experiments performed and the 

literature reviewed are signs that information theory in convolutional neural networks can be 

used.  

7.2 Limitations and Recommendations 
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Although the results indicated the precise implementation of the thesis methodology, there 

are a number of limitations to the proposed method. First, all the information quantities 

mentioned in this paper are calculated by taking all variables in one-dimensional vectors, i.e., 

the input images or output of any layer is first converted to a single vector before entropy or 

mutual information of the variables calculated. Although this calculation is straightforward, it 

results in the spatial relationships in the image-related data being ignored. Therefore, the 

question remains as to the reliability of the information theoretic estimation that is feasible 

within a tensor structure. In future studies, developing a calculation method by considering 

this spatial relation will give more reliable results. 

Other useful work that could be attempted can be listed as follows: 

1) By giving different numbers of inputs to the training model, the effect of the number of 

training data on learning can be seen with the same approach. 

2) By using different optimisation functions for the model during the learning process, the 

effect of the optimisation function on learning can be realised. 

3) In addition, the accuracy of the proposed method can be determined by trying different 

estimation methods for mutual information calculation. 

7.3 Summary 

In conclusion, in this thesis, a new method was proposed and experimentation conducted to 

analyse the learning process of convolutional neural networks. To explain the features of 

CNNs’ learning processes, quantities from Information Theory were utilised. During the 

experiments, two different datasets, MNIST and CiFAR-10, were trained with two different 

models in order to ensure the reliability of the methods used. Both model’s results generally 

supported each other. The results of the numerical experiments revealed that information 

theory is an excellent tool with which to explain convolutional neural networks. Calculation 

limitations and related concerns are stated above and are given as recommendations for 

proper resolution in future studies. 
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