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Progression of scene
understanding from

2015 ... O 2018

Badrinarayanan, Kendall, Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. PAMI, 2015.
Kendall, Gal and Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Scene understanding is beginning
to work out in the wild..
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International Computer Vision Summer School

Qutline of lecture

1. Motivate and define scene understanding

2. Learning representations of semantics, motion
and geometry

3. Application to mobile robotics and

autonomous driving



Part 1: What is 'scene understanding’?



A possible computer vision definition?

* “Holistic scene understanding ... reasons jointly about regions, location, class and spatial extent of
objects, presence of a class in the image, as well as the scene type.”

Yao, Fidler and Urtasun “Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation”,
CVPR, 2012.

* “Scene understanding, in contrast to object recognition, attempts to analyze objects in context with
respect to the 3D structure of the scene, its layout, and the spatial, functional, and semantic
relationships between objects.”

Max Planck Institute for Intelligent Systems, Perceiving Systems homepage, retrieved August 2018.

* “Scene understanding is to analyze a scene by considering the geometric and semantic context of

its contents and the intrinsic relationships between them.”
Indoor Scene Understanding in 2.5/3D: A Survey. Naseer et al. 2018.
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Scene Understanding for Autonomous Driving

3D Object Detection I
Semantic Segmentation

Agent Prediction

Autonomous
Turning indicator detector - Driving State
HD Map Representation

Driving Affordability Prediction

Traffic sign detection
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s this the best approach?

* Many KITTI metrics are at 90%+ e

DOt o bt tine o Techewon
el Tosta Tecional mattts ot Cleagn

« Are these metrics a good proxy for improving
autonomous driving performance?

« Can we enumerate a priori the information that
IS required for a task?

Are these tasks the best intermediate

representation? ‘;’ltj\':veo gg;gj

« Can we consider scene understanding Odometry: 99.45%
independently of control? 2D Object: 91.97%

| | 3D Object 77.86%

Do we care about in-domain test data? Tracking 90.77%
Segmentation: 72.82%

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the KITTI vision benchmark suite.” CVPR, 2012.
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A possible neuroscientist’s definition

» “Studies in scene perception have shown that observers recognize a real-world scene at a single glance. During this
expeditious process of seeing, the visual system forms a spatial representation of the outside world that is rich
enough to grasp the meaning of the scene, recognizing a few objects and other salient information in the image, to
facilitate object detection and the deployment of attention.”

Oliva. "Gist of the scene." Neurobiology of attention. 2005.

* “Scene understanding exists on a continuum. At one end is a very fast and seemingly effortless extraction of the
scene's gist—often just its category name. At the other end is the slower and often effortful attachment of deeper
meaning to the scene. I will adopt the lay person's definition of scene understanding—what is the scene about? What
is the story that it is trying to tell?”” Understanding scene understanding.”

Zelinsky. “Understanding scene understanding”. Frontiers in psychology, 2013.

* “There is little evidence suggesting any bias toward either scene-level or object-level recognition.”

Fei-Fei, Iyer, Koch, Perona. “What do we perceive in a glance of a real-world scene? ”. Journal of Vision, 2007.
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A possible neuroscientist’s definition

* “It 1s possible to know every object and action 1n a scene and still
not know what the scene i1s about—knowledge of these elements
1s, quite literally, not the whole story. Minimally, true
understanding requires a more extensive filtering and ordering of
this list to capture only those objects, actions, and events that are
important to a viewer's interpretation.”

Zelinsky. “Understanding scene understanding”.
Frontiers in psychology, 201 3.
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“We have a brain for one reason and one reason only -- that’s to produce
adaptable and complex movements. Movement is the only way we have
affecting the world around us... I believe that to understand movement
is to understand the whole brain. And therefore it’s important to
remember when you are studying memory, cognition, sensory

processing, they’re there for a reason, and that reason 1s action.”

Prof Daniel Wolpert, TED 2011
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How | think about scene understanding:

Scene understanding is to extract a
minimal representation of the world
which can be used to evaluate action.
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Scene Understanding Topology

* Input sensory data, x

« Scene understanding model, f(+), to learn

representation, z = f(x)

 Policy model, m(+), to learn output(s) such as decision, action,

auxiliary representations, y = m(z)

« Dynamics/transition/prediction model, t(+), to predict future

states, z;41 = t(y, 2)
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Semantic Segmentation
t Y Teyst

Object Detection Decision Performance

Dynamics Model Zy 45t

Future Scene
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Scene Understanding
Representation

Understanding
Representation

Scene Understanding Model

Xt
Sensory Input Data
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A representation learning perspective

1. Form a world model, to model the global dynamics and explain the world:

Ha and Schmidhuber. Recurrent world models facilitate policy evolution. NeurlPS, 2018.

Srinivas, Jabri, Abbeel, Levine, and Finn. Universal planning networks. ICML, 2018.

Burda, et al. Large-scale study of curiosity-driven learning. arXiv 2018.
2. Or, we can learn a task-specific representation:

« Ghosh et al. Learning actionable representations with goal-conditioned policies. ICLR 2019

« Dwibedi et al. Learning actionable representations from visual observations. IROS, 2018,
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A recipe for a good representation

e Contain the hand-specified information which is believed to be necessary (but not

sufficient) for the task. For driving, this includes semantics, motion and geometry,
e Be optimised with respect to the end task to learn the information sufficient for the task,

e Contain an excellent signal-to-noise ratio to observe the data required to make the
decision. Therefore we need the right sensor configuration and transform the signal into a

compressed, nuisance free & invariant representation.

e Eliminate any spurious correlations in the data. Disentangle the data and ensure the correct

causal information is used.
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Part 2: Scene Understanding

Learning semantics, motion and geometry



Learning Semantics

With Semantic Segmentation



Many representations

* Image classification

« 2D & 3D detection

« Semantic segmentation
* Instance segmentation
* Panoptic segmentation
« Semantic embedding
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Semantic Segmentation Datasets

Difficulty tends to scale with diversity and number of classes.

o CamVid (small scale driving), 300 images, 12 classes
« CityScapes (clean driving scenes), 5k images, 20 classes, 84% mloU
« Mapillary Vistas (diverse driving scenes), 25k images, 66 classes, 52% mloU

SUN RGB-D (indoor scenes), 5k images
NYUVZ (indoor Kinect data), 2k images

Pascal VOC (object segmentation), 10k images, 20 classes, 85% mloU
MSCOCO (object segmentation), 200k images, 150 classes, 56% mloU
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Summary of core ideas in semantic
segmentation from 2015-2019

PASCAL VOC Leaderboard: Segmentation loU by Year
100

90
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o0 W

2013 2014 2015 2016 2017 2018 2019

Source: http://host.robots.ox.ac.uk/pascal/VOC
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‘Fully’ Convolutional Neural Networks

* Prior deep learning approaches to

semantic segmentation used CNNs S
. . 63%%;5“ 150,00 \,0°°

to classity each image patch

“tabby cat”

ol 5

convolutlonahzatlon

¢ tabby cat heatmap

90,00,
,5%0. 3%1\ 1‘)6 007 n0740

* FCN proposed to interpret densely
connected layers as 1x1
convolutions

* Fine-tuned ImageNet classification

models for pixel-wise semantic | ® | |
Seg mentation Figure 2. Transforming fully connected layers into convolution

layers enables a classification net to output a heatmap. Adding
layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR. 2015.
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Encoder-Decoder Architectures

Encoder reduces spatial dimensions,
enhancing feature complexity

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image B conv + Batch Normalisation + RelU Segmentation
I Pooling I Upsampling Softmax

Decoder recovers spatial dimensions

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. "SegNet: A deep convolutional encoder-decoder architecture for image segmentation." PAMI 2015
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Encoder-Decoder Architectures

» SegNet first trained a custom semantic
segmentation architecture end-to-end

e ‘Invert’ classification networks like VGG to
construct encoder-decoder

* Encoder downsamples spatial dimensions
with max-pooling, building more depth in
feature dimensions

» Decoder upsamples spatially with
unpooling

» Efficient real-time performance and
webdemo

2015 Webdemo: http://mi.eng.cam.ac.uk/projects/segnet/
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http://mi.eng.cam.ac.uk/projects/segnet/

Skip-Connections
input
imatﬁg - g "8': . cs)g;erlmj;ntation
. gl o & ma
e Big improvement by 1443 ™
introducing residual '
connections and skip
connections : H’I
* Train deeper models and T |
ensure information is I i1 o =FE0NY 258, RELY
h 512 512 1024 512 ' S = copy and crop
aggregated from all stages +H-E — i E-E-E § max pool 2x2
. . S 2§ 100 ! B 4 up-conv 2x2
in hierarchy, and from all - — — = conv 1x1

m

stages of spatial
. Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
SU bSQ M pl | ﬂg box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.
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Improving the recognition front-end

* | M p rOvVeSs Performance of PSPNet with different pre-trained ResNet on ADE20K validation set
semantic 62.5 6235

segmentation S
oerformance 3615 .
; 61.

from AlexNet -> 3
VGG -> Resnet -

= 60.5

=

= 60

50 101 152 269

Depth of ResNet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
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Increasing Context

« With larger context, improve segmentation performance
« Better consistency across homogenous regions like sky, road

* Include more semantic meaning across scene and
disambiguate challenging appearance

* Examples include:
 Dilated convolutions
* Pyramid pooling module
« Atrous Spatial Pyramid Pooling

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions.” ICLR (2016).

Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

» Approaches to aggregating context
Small Besolunon m E

. ::A _ E' : : :lz . 7 1 ' P v K
O ~ R i : L7 T LT LT
L7 " = (T —— LT -, @7 Spatial Pyramid Pooling
' I I l 2xup ; A : - ~" -
y 4 4. A —— Ay L7  Awous 4

Convolution
.

f ! 1 | 2xup I ! 1
t b r | - P 1
Image Scale 1 Image Scale 2 Image Image Image Image
(a) Image Pyramid (b) Encoder-Decoder (c) Deeper w. Atrous Convolution (d) Spatial Pyramid Pooling
Figure 2. Alternative architectures to capture multi-scale context.

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

e Qualitative results show
improved class consistency

(a) Image (b) Front end (c) +Context

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions.” ICLR (2016).
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Qualitative results perform well on all scales

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

« Atrous Spatial Pyramid Pooling module

(a) Atrous Spatial
Pyramid Pooling
o 1x1 Conv
1 - 3x3 Conv
COL\V rate=2 EE s Cogcat
Pooll Block1 Block2 Block3 Block4 3x3Conv | 1x1 Conv
—_— — — > rate=12 E—
— 3x3 Conv
Image sgige 4 8 16 to = .
(b) Image Pooling

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context with PSPNet

HTdINVSdN

—[Foo}—~-

CONCAT

(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Figure 3. Overview of our proposed PSPNet. Given an input image (a), we first use CNN to get the feature map of the last convolutional
layer (b), then a pyramid parsing module is applied to harvest different sub-region representations, followed by upsampling and concatena-
tion layers to form the final feature representation, which carries both local and global context information in (c). Finally, the representation
is fed into a convolution layer to get the final per-pixel prediction (d).

Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
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Hyper-parameters are important!

L earning rate schedule commonly used:

iter power
* LR = LR (1 - ——) LRy = 0.01, power = 0.9
maxiter

* Batch size and normalisation: batch size | mIOU
* In-place activated batchnorm 4 64.43
* Instance normalisation 8 75.76
. 12 76.49
» Very big GPU cluster 16 7791

Table 9. Effect of batch size on PASCAL VOC 2012 val set. We em-
ploy output_stride=16 during both training and evaluation. Large
batch size is required while training the model with fine-tuning the
batch normalization parameters.

Rota Bulo, Samuel, Lorenzo Porzi, and Peter Kontschieder. "In-place activated batchnorm for memory-optimized training of dnns." CVPR. 2018.
Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Instance normalization: The missing ingredient for fast stylization." arXiv preprint arXiv:1607.08022 (2016).
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Instance Segmentation

« Embedding / clustering [kendall et al, De Brabandere et al.]

* Region proposals [mask-rcnn, He et al ]
* Edge detection [deep watershed, Bai et al ]

(a) Input Image (b) Semantic Segmentation [34] (c) Our Instance Segmentation  (d) GT Instance Segmentation

Alex Kendall © Wayve 2019




Summary of segmentation & open problems

* Performs very well with sufficient labelled data

* Large context and receptive fields help
(but why do practical << theoretical receptive fields?)

« Rare classes are still hard (zero / few shot learning)

« Open set / unknown set classification is interesting

« Can we learn embeddings that reduce reliance on supervision”
« Robustness and modelling uncertainty

« Understanding reasoning and causality
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Learning Geometry
Depth and Shape Estimation



Deep Learning for Stereo Vision

- -
"

Input Left Image

.......

Depth Prediction Depth Prediction Uncertainty

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.
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Brief History of Stereo Vision

..

H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and mutual information. CVPR 2005

Engineered Features Regularisation (e.g. Disparity

(e.g. CENSUS) SGM) Estimation

Regularisation (e.g.

Learned Cost (e.g. MC-CNN) SGM)

Disparity Estimation

J. Zbontar and Y. LeCun. Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR 2016.

Learned Disparity Regression

N. Mayer et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.

Learned Disparity Regression, with Geometry

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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GC-Net: end to end deep learning for stereo

« Form differentiable cost volume using stereo geometry
» Sub-pixel disparity regression with soft ArgMax function
« Use 3-D convolutions to learn features with large context

:}HHH'-HH

[ Shared Weights J | Shared Weights
T C[E@ AT m—
Input Stereo Images 2D Convolution ‘ Cost Volume Multi-Scale 3D Convolution | 3D Deconvolution Soft ArgMax Disparities

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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Context-aware

» Saliency shows which
oart of the input
signal affects output
orediction

* Demonstrates the
model has a large
receptive field to
learn disparity with
context

Alex Kendall et al. End-to-End Learning of Geometry

and Context for Deep Stereo Regression. ICCV, 2017.

(a) Left stereo input image

ﬂlll“

(b) Predicted disparity map

(c) Saliency map (red = stronger saliency)

(d) What the network sees (input attenuated by saliency)
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Input

Monocular Depth from Recogmh‘on

* Eigen & Fergus regressed depth and
surface normals from a CNN

« Showed that networks could learn
regression tasks e

» Estimating depth based on semantic ll-;:l' T

and geometric cues

* Results on challenging indoor
datasets

Eigen, and Fergus. "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture." ICCV. 2015.
Eigen, Puhrsch, and Fergus. "Depth map prediction from a single image using a multi-scale deep network." NeurlPS. 2014.
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Self-Supervised Depth Estimation

1 Left Image Predicted Inverse Depth
D(x) = fB/d(x)

I,(x) Deep CNN

/“
5 ||Iw(x) L)

Inverse Warping
Reconstruction Error <« [ (x) = L(x+D(x)) :

Warp Image Right Image I,(x)
L,,(x)
= ZErecons+7 smooth
z- z- Breams = [ I1(0) = B(@)IPdz = [ 1@+ Di(a)) ~ Li(a)|Pda
smooth — HVD (‘T;)”2 / . e Ve
fB/d'(z)

Garg, Ravi, et al. "Unsupervised CNN for single view depth estimation: Geometry to the rescue.” ECCV, 2016.
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Monocular Self-Supervised Denth Estimation

Input image Our prediction

(a) Training: unlabeled video clips.

Depth CNN

-

Pose CNN

Target view

L—1
=

oy

(b) Testing: single-view depth and multi-view pose estimation.

Zhou, Tinghui, et al. "Unsupervised learning of depth and ego-motion from video." CVPR. 2017.
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Self-Supervised Learning of Geometry

We can learn depth and ego-motion using multi-view geometry with
the camera intrinsics, K, predicted depth, yye.h, and egomotion, T.

Camera projection
X = Ydepth,t(pijt)K_lpz'jt-
Pije—1) = KTie_1)X.
Photometric reconstruction loss

1 5
Linono depth, t :N Z |It(pijt) - I(t—l)(pij(t—l))|,

t5J

Zhou, Tinghui, et al. "Unsupervised learning of depth and ego-motion from video." CVPR 2017.
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Remaining Challenges

« Occlusion, aperture problem,
ambiguity, dynamic objects...

Monocular Depth Prediction Optical Flow Estimation
: -
& »
"
i Loss
v
— B - -
A ‘
i Loss
= v
L D o
: g Vv L
- =
Camera Motion Estimation Motion Segmentation

Figure 2: The network R = (D, C') reasons about the scene by estimating optical flow over static regions using depth, D, and
camera motion, C. The optical flow network F' estimates flow over the whole image. The motion segmentation network, M,
masks out static scene pixels from F' to produce composite optical flow over the full image. A loss, E, using the composite
flow is applied over neighboring frames to train all these models jointly.

Ranjan, Anurag, et al. "Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation." CVPR. 2019.
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State of the art self-supervised depth out
performs supervised learning!

ge PackNet-SfM Vid2Depth [24] SfMLearner [+ 3] DF-Net [44]

Guizilini, Vitor, et al. "PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation." CVPR (2019).
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PackNet-SfM
3D Packing for Self-Supervised
Monocular Depth Estimation

Vitor Guizilini*, Rares Ambrus*, Sudeep Plillai*, Adrien Gaidon
Toyota Research Institute (TRI)

/ ) TOYOTA

RESEARCH INSTIT

* Authors contributed equally

Guizilini, Vitor, et al. "PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation." CVPR (2019).




Learning Motion
With Optical Flow and Ego-Motion Representations
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convolutional
network

Optical Flow with Deep Learning

* L earning dense correspondence between images
« NO ground truth sensor -> use large synthetic datasets

uu”--ﬁ
Sy

Figure 5. Flying Chairs. Generated image pair and color coded flow field (first three columns), augmented image pair and corresponding
color coded flow field respectively (last three columns).

Dosovitskiy, Alexey, et al. "Flownet: Learning optical flow with convolutional networks." ICCV. 2015.
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Improving FlowNets with Hierarchy & Geometry

5.8 MPI Sintel test (final pass) N MPI Sintel test (final pass)
» Use learnable > v—
:_o- § .SpyNetF ow el
cost-volumes 556 s
.g o= ®FlowNetS
. . & g‘
* Hierarchical Gs 4 | e 7
fe
1 bt o FlowFieldsCNN ®MRFlow v
refinement to % | PWCNetsmall g,
: : £52 26 R
reduce disparity 2 eDCFlow E L
ePW(C-Net ePWC-Net-small
dOmC”n Sl i 5 { *PWC-Net ; ;
10~ 10° 10° 10* 0 50 100 150 200
Running time (seconds) Number of parameters (millions)

Figure 1. Left: PWC-Net outperforms all published methods on
the MPI Sintel final pass benchmark in both accuracy and running
time. Right: among existing end-to-end CNN models for flow,
PWC-Net reaches the best balance between accuracy and size.

Sun, Deging, et al. "PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume." CVPR. 2018.
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Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Video scene understanding literature

» Accurate non-real-time graphical models: Tripathi et al., 2015;
Kundu et al. 2016; Budvytis et al. 2010

» Focusing on real-time performance with conditional computation:
Shelhamer et al. 2016; Zhu et al. 201/

» One shot mask propagation: Tokmakov et al. 2017; Tsai et al. 2016;
Vertens et al. 201/

* Only two-frame: Gadde et al, 2017; Zhu et al, 2017; Zhou et al. 2018

 RNN models which perform worse than single frame models!
Patraucean et al. 2015; Valipour et al. 201/
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VideoSegNet Architecture

Monocular o o o o e e e e e e e e e e e e e —

/ \
Input Video
; :m X R . z, h / 1
t 4| Feature Combine Motion-Aware —» 125K Self-supervised Depth

Il Encoder Flow Feature I;Sv?]tures Recurrent Layer Decoders & Ego-motion Loss
I/ Encoder |Y't=1)ot - \
| flow i Self-supervised
Y S A R ~

‘ Optical Flow Loss

S -
Image

Feature Combine Motion-Aware Task
Features Decoders
Recurrent Layer

Supervised
Semantic Loss
|

Flow Feature
Encoder

N - EEE— X r

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.

v

i
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Three tricks to enable Video SegNet

1. Account for motion and geometry when propagating features
« Unlike RNNs for vectors, convolutional RNN features are not aligned
spatially over time due to motion
2. Provide aloss at each timestep
« Semantic are expensive to label
« We leverage self supervised learning for motion and geometry - for free at
each timestep
3. Use temporal data augmentation

» Learn stable features by augmenting sequence length and label position
« Challenging to fit in memory!

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Self-Supervised Learning of Motion

We can learn optical flow, depth and ego-motion using self-supervised
losses based on photometric reprojection error.

Key idea is to learn to warp image to next timestep using spatial
transformer network

e.g. for optical flow,

Eflow, t — N let(”u]) — I(t—l)(z +Yflow i,t(zvj)aj +yflow j,t(%]))”'
t,]

Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." N/PS. 2015.
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Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Motion-GRU

* Align features temporally witha g, = sigmoid(W, % z; + U, * h{"*/?** 4+ b,)
motion gated recurrent unit. ry = sigmoid(W, * z + Uy x h*“P°4 4 p)

° SlgnlfICa ntly IMpProves iflt _ tanh(Wh wzy + U %1, - hwarped)
performance and temporal

. _ . warped .
consistency. h, = (1—g:)-h, +g¢ - hy,

Segmentation Depth Flow
Recurrent Model [oU |Consistency|Err. (px)|Err. (px)
per-frame baseline (no motion) [63.9% | 82.3% 11.2 -
GRU 63.5% 87.4% 9.3 14,7
motion-GRU 65.6% | 91.9% 9.1 12.3
motion-GRU + consistency loss|65.9%| 94.2% 9.4 121

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Using multi-task self-supervision

Segmentation Depth Flow | Egomotion
Tasks IoU | Consistency | Err. (px) | Err. (px) | Err. (m)
segmentation 63.8% 82.7% - - -
segmentation+flow 65.1% 91.3% - 14.1 -
segmentation+flow+mono depth | 65.6% 93.8% 21.8%* 12.3 (0.39%*
segmentation+flow+stereo depth | 65.9 % 94.2 % 9.4 12.1 -

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Holistic Scene Understanding

With Semantics, Motion and Geometry

|||||||||||||||||||||



Multi-task Deep Learning

* We now want to learn a representation which contains the
union of all the information we need

 We also want to use information from one task to benefit the
oerformance on another task and vice-verso

Alex Kendall © Wayve 2019



Multitask Scene Understanding Architecture

. Semantic
_ Semantic Task
Decoder Uncertainty
Input Image
‘» | Instance i

Encoder [ Instance |,y ¢ 'ﬂ%‘ *‘"a— Task Multi-Task

_>4\/ ‘\\\_
Decoder Uncertainty 4 Loss
Depth
. Depth ‘ | Task

Decoder " | Uncertainty

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Multitask deep learning literature

« Machine Learning: Caruana. Multitask learning. Learning to learn, 1998

« Computer Vision: Kokkinos. UberNet: Training a universal convolutional neural network
for low, mid, and high-level vision using diverse datasets and limited memory. CVPR,

2017

« Medical Imaging: SpineNet: automatically pinpointing classification evidence in spinal
MRIs." MICCAI, 2016.

» Natural Language Processing: Collobert and Weston. A unified architecture for natural
language processing. ICML, 2008.

« Speech Recognition: Huang et al. Cross-language knowledge transfer using multilingual
deep neural network with shared hidden layers. ICASSP, 2013.

All previous methods use uniform or manually tuned weights
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Instance Weight
1 09 08 07 06 05 04 03 02 0.1 0
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Z 44 A
% 0.66 2
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5) 0.7
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Depth Weight

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Using Task Uncertainty as Weighting

» Weighting should vary with magnitude and difficulty of task

« A measure of uncertainty is a good proxy

* We consider homoscedastic uncertainty as task uncertainty
as it does not vary with input data

* Formulate as maximum likelihood estimation
» Multitask model outperforms equivalent single trained models

! 1

For example, for two regression losses the loss is given by: = Fﬁl(w) + 952 L2(W) + log o0z
1 2

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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....
*

Multi-task Deep Learning m% Y

Cun ature

7 L)Seon

» Other solutions now proposed: . (O e Tl

« GradNorm: normalise gradients Ve
between various tasks e s e O e

« Multi-objective normalisation to a —.._

Pareto optimal solution E:Ef— DR @pcoans Cam 1y

« Taskonomuy: empirically

. mm:-wxmm %;; Ihnmsmgl o ”“H[“\ww\djzmslnny Pts
| ;l-
measuring the related-ness or S
distance between tasks and how

representations should relate s

Figure 3: Task Dictionary. Outputs of 24 (of 26) task-specific networks
for a query (top left), See results of applying frame-wise on a video here,

Chen, Zhao, et al. "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks." arXiv preprint arXiv:1711.02257 (2017).
Sener, Ozan, and Vladlen Koltun. "Multi-task learning as multi-objective optimization." Advances in Neural Information Processing Systems. 2018.
Zamir, Amir R., et al. "Taskonomy: Disentangling task transfer learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Part 3: Autonomous Driving

Some Historical Background

Why do we need computer vision when we can learn end-to-end for action?
Can we understanding what we don’t know?

How do we get enough data?

How do we interpret and debug deep learning representations?



Machine Learning for
Autonomous Driving

Some Historical Background

|||||||||||||||||||||



1989 ALVINN: End-to-End Imitation Learning

What’s Hidden in the Hidden Layers?

The contents can be easy to find with a geometrical problem,
but the hidden layers have yet to give up all their secrets

45 Direction
Output Units

Road Intensity
Feedback Unit

\
N
\\\\%

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

Figure 1: ALVINN Architecture

David S. To:t;'etzk)';nd Dean A. Pomerleau

tions, we fed the network road images
taken under a wide varicty of viewing an-
gles and lighting conditions, It would be
impractical to try to collect thousands of
real road images for such a data set. In-
stead, we developed a synthetic road-
image gencrator that can create as many
training examples as we need.

To train the network, 1200 simulated
road images are presented 40 times each,
while the weights are adjusted using the
back-propagation learning algorithm.
This takes about 30 minutes on Carnegic
Mellon's Warp systolic-array supercom-
puter. (This machine was designed at
Carnegie Mellon and is built by General
Electric. It has a peak rate of 100 million
{loating-point operations per second and
can compute weight adjustments for
back-propagation networks at a rate of 20
million connections per second. )

Once it is trained, ALVINN can accu-
rately drive the NAVLAB vehicle at
about 3'%4 miles per hour along a path
through # wooded area adjoining the
Carnegie Mellon campus, under & vari-
ety of weather and lighting conditions.
This speed is nearly twice as fast as that
achieved by non-neural-network algo-
rithms running on the same vehicle. Part
of the reason for this is that the forward
pass of a back-propagation network can
be computed quickly. It takes about 200

AUGUST 1989 « BYTE 231

milliseconds on the Sun-3/160 worksta-  work chooses a representation in which
tion installed on the NAVLAB. hidden units act as detectors for complete

The hidden-layer representations AL-  roads at various positions and orienta-
VINN develops are interesting. When  tions. When trained on roads of variable
trained on roads of a fixed width, the net- continued

Photo 1: The NAVLAB autonomous navigation test-bed vehicle and the road used
for trial runs.

Pomerleau, Dean A. "ALVINN: An autonomous land vehicle in a neural network.” Advances in neural information processing systems. 1989.
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2016 NVIDIA: Lane Following on Highways

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

(
=" 7 \
In-vehicle camera\

Convolutional
feature map
48@5x22

L

Convolutional
feature map
36@14x47

. x5 kernel

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

Bojarski, Mariusz, et al. "End to end learning for self-driving cars.” arXiv preprint arXiv:1604.07316 (2016).
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Deep reinforcement learning on a self
driVing Car is pOSSibIe! — ddpg —— ddpg + visual reconstruction

~ 250 task solved
» Data-efficiency: learning to lane follow from 11 8 ol
training episodes (15 mins) 2
» Sparse reward: drive as far as possible without § 5
safety-driver intervention 5 .
2 o
« End-to-end deep learning from image input = 5

0 5 10 15 20 25 30 35 40

« All optimisation using on-board computer TR eRonts
Training Test
Model Episodes  Distance Time Meters per Disengagement  # Disengagements
Random Policy - - - 7.35 34
Zero Policy - - - 22.7 11
Imitation Learning [18] f - 250 m 2 min 41.7 6
Imitation Learning [18] - 12,000 m 60 min - 0
Deep RL from Pixels 35 298.8 m 37 min 143.2 1
Deep RL from VAE 11 195.5 m 15 min - 0

Alex Kendall et al. "Learning to Drive in a Day” International Conference on Robotics and Automation. 2019.
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Urban driving with end-to-end machine learning

End-to-end deep learning

. @

Uncertainty propagation ' '

from sensing to action

Inputs: camera video and a Outputs: driving
sat-nav commands

f\) W AY V E

Wayve et al. Urban Driving with Conditional Imitation Learning, Under Review, (2019)
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Why do we need computer
vision when we can learn
end-to-end for action?

|||||||||||||||||||||



B Segmentation Albedo Segmentation Albedo Segmentation

Depth Optical flow Optical flow Depth Optical flow
L
e Effect of 2 |
computer - s - , il
VISIOn on C Urban driving Off-road traversal Battle
oerformance . , 0
for control in | |
. . : X 4 T
simulation o o

0.6 0.6

0.4 0.4

0.2 0.2

- . 0.0 -
SR WSR SR WSR Frags
®Image(l) ®I|+albedo @]I+flow |+depth @|+segment @|+all

0.0

Brady Zhou, Philipp Krahenbihl, and Vladlen Koltun. Does Computer Vision Matter for Action? Science Robotics, 4(30), 2019
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Urban driving with end-to-end machine learning

End-to-end deep learning

. @

Uncertainty propagation ' '

from sensing to action

Inputs: camera video and a Outputs: driving
sat-nav commands

f\) W AY V E

Wayve et al. Urban Driving with Conditional Imitation Learning, Under Review, (2019)
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Data Collection from Human Demonstration

gl \aN
? E s

, o T
Alex Kendall © Wayve 2019
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Autonomous Drlvmg Demonstration - Complex Roads

, o W o i
| "_Ll ' \ VI b i L,u”“"
a i ‘ | By ‘ W ) ;"‘- ;- ! | ;'“i 'i“
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Autonomous Driving Demonstration - Interaction with Traffic

e

e o
] 8 ==

- “_‘
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Autonomous Drlvlng Demonstrohon - Vehicle Following
& , " s —
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Modelling Uncertainty

Understanding what we don’t know

|||||||||||||||||||||



Why do we need to model uncertainty?

« Active learning: important to generate a learning curriculum,
data is very biased with long tail distribution problems

« For safety: important to know when our model isn't confident
« For representation learning: to tTuse sensory information

.l T Te— -I‘ hl|||“|l I
0 4 8

STTLLL L [T
-100 -50 0 50 100 0 20 40 60 80 100 12 16 20 24 0 20 40 60 80 100

(a) Steering (£ %) (b) Speed (km/h) (c) Time of day (hour) (d) Throttle (%)
Figure 5: We collect training data driving across a European city (see 3a). The data, as is typical, is
imbalanced, with the majority driving straight (5a), and a significant portion stationary (5b).
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What kind of uncertainty can we model?

Epistemic uncertainty
* Measures what your model doesnt know
« Can be explained away by unlimited datao

Aleatoric uncertainty
« Measures what you can’t understand from the dato
« Can be explained away by unlimited sensing

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural Safety, 31(2):105-112.
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Modeling Epistemic Uncertainty with
Bayesian Deep Learning

« We can model epistemic uncertainty in deep learning models using
Monte Carlo dropout sampling at test time.

* Dropout sampling can be interpreted as sampling from a
distribution over models.

Segmentation

Convolutional Encoder-Decoder Stochastic Dropout
Samples

mean

Model Uncertainty
variance ! ‘, @
> - iy
Vs

J P Ak &
o aloma oLy 47
& v -
. J 3

RGB Image

I conv + Batch Normalisation + RelU
I propout M Pooling/Upsampling Softmax

7
P

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Aleatoric Uncertainty with Probabilistic
Deep Learning

Deterministic Deep Learning Probabilistic Deep Learning
Model [ 1=7C) [9,6%] = f(x)
. ly — 9l .
Regression Loss = |ly — 9| Loss = 262 +logd

Classification | Loss = SoftmaxCrossEntropy(9;)

1
Loss = Tz SoftmaxCrossEntropy(¥;)
t

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Probabilistic Loss Derivation

1 _(x—p)?
e 202

Gaussian PDF =
2102

We want to directly regress this probability distribution function.

Therefore, forming a negative log likelihood loss:

1 _M (x — pu)?
Loss = —log We 20 =957 + log(o) + constant

We can ignore the constant term. We want to constrain ¢ to be positive real,

therefore we regress s := log(o?).

L _l —S|| _"ll _|_1
OSS—2€ y y 2 2S
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Train/Test Distribution Shift

» Aleatoric uncertainty remains constant while epistemic
uncertainty increases tor out of dataset examples!

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance variance
Make3D /4 | Make3D | 5.76 0.506 1703
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Qualitative comparison

« Epistemic uncertainty is modeling uncertainty
« Aleatoric uncertainty is sensing uncertainty

——

(a) Input Image (b) Ground Truth (c) Semantic Segmentation  (d) Aleatoric Uncertainty (e) Epistemic Uncertainty
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Bayesian Deep Learning for Segmentation

Input Image Semantic Segmentation Uncertainty

Alex Kendall et al. Bayesian SegNet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. BMVC 2017
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Bayesian Deep Learning for Stereo Vision

Input Right Image

Dy W

Depth Prediction Depth Prediction Uncertainty

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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How do we get
enough data?

Learning to Drive in Simulation With no Real-World Labels
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A Distributed workers collec

experience onr. andomized

Prior Approaches to Sim2Real

« Photo-realistic simulation
« Transter learning and fine-tuning

* Intermediate representation like segmentation

« M. Mueller et al. Driving Policy Transfer via
Modularity and Abstraction. CoRL, 2018.

e Domain randomisation
« Andrychowicz et al. Learning dexterous in-hand manipulation. arXiv 2018.

« Tobin et al. Domain randomization and generative models for robotic
grasping. IROS, 2018.

« Peng et al. Sim-to-real transfer of robotic control with dynamics
randomization. ICRA, 2018.
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Can we train real-world models in
simulated worlds?

e /ero shot sim?2reaql

* Learn to project to a latent
space for domain
translation and control
jointly

e Demonstrate this method

can drive 3km+ on public
UK roads

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Learning to Drive from Simulation without Real World Labels
i i » d 2 d d. Z ool d d 2o

Zd &{sim, real} a
Common latent space

real

d €{sim, real}

d €{sim, real
{ ) Common latent space

Common latent space

2.
C C C
(a) Reconstruction loss (b) Cyclic recon. loss (C) Control loss (d) Cyclic control loss
Reconstruction Loss X = Gu(Eq(Xq))
Cyclic Reconstruction Loss XV = Ga(Ep(Ga(EyXy))))
Control Loss ¢ =C(Eg(Xq))
Cyclic Control Loss ¢V = C(Ep(Ga(Eq(Xqg))))

Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Comparison to Baseline Methods

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23T

Simple Transfer ~ 0.055 0.056 0.265 0.272 9l

Real-to-Sim Translation - - 0.261 0.234 107

Sim-to-Real Translation - - 0.059 0.045 o8t

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 151
Ours 0.017 0.018 0.081 0.087 >3000

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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How do we interpret and
debug deep learning
representations®
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Inspecting the state
for traffic light signal

; > >
xmput Z Ycontrol
. 1.0 +
Learn to decode the high
dimensional state -
y aux 0.6 1
Perception Encoder Architecture Accuracy | Mean Class Accuracy o
Naive Convolutional Encoder 55% 23%
Naive Convolutional Encoder Fine-Tuned for Traffic Lights 92% 46% ol
Self-Attention Traffic Light Encoder 83% 47%
Table 3: Accuracy of various models classifying an image into six traffic light states (see Figure 3).
This technique informs us about the efficacy of each model to extract this information. 0.0 -

T 1 O T W) LJ
Red Amber Green Red & Amber R &G None
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Inspecting
the state
for traffic
light signal,
semantics
and depth
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Model-Based Saliency

» Faster than input-perturbation analysis and more accurate
than gradient based saliency methods.

Perturb Input with Saliency Mask -_-_ @
N <, v
R)—s i

Frozen & Pretrained Driving Model

Input Image Trainable Saliency Model Saliency Mask

Figure 4: Model-based saliency architecture. We analyse a pretrained policy model by freezing the
weights and learning to perturb the input with a saliency model using the loss given in Equation (1)

Dabkowski and Gal. "Real time image saliency for black box classifiers.” NeurlIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation.” ICCV. 2017.
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Model-Based Saliency

Suppose f(+) is our driving model and m(-) is our saliency model
and L(+) is our loss function for the driving model and the
operator x - m degrades the image with noise.

.y
L= m(x)| + A,|Vm(x)| + 15L, f(x - m(x)) + A4l | flx- (1 — m(x))

Sparse saliency mask Informative saliency mask

Smooth saliency mask Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers.” NeurlPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation.” ICCV. 2017.
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Model-Based Saliency

Suppose f(+) is our driving model and m(-) is our saliency model
and L(+) is our loss function for the driving model and the
operator x - m degrades the image with noise.

~As
L = A |m@)| + A, |Vm(x)| + AsL (f(x : m(x))) + AL | f (x (1- m(x)))

Sparse saliency mask Informative saliency mask

Smooth saliency mask Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers.” NeurlPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation.” ICCV. 2017.
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Conclusions
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Games like Go & DOTA  Autonomous Driving

e Incredibly difficult action space: o Quite easy action space: stop,
long term strotegy, cooperation go, left, right motion primitives

e Very basic state space, often _
discrete, fully observable and o Super challenging state space:
noise-free / maniftold of natural images!

This needs to be solved by the computer vision community!
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Future challenges for scene understanding

Deploying deep learning to robotics
 ETficient, robust and multi-task representations

» Metrics need to reflect end-to-end system
oerformance

 Jointly training scene understanding with control
oolicies

Alex Kendall © Wayve 2019



Future challenges for scene understanding

Structural Building Blocks:

* What happens next? Develop prediction anad
dynamics models (but not in RGB space!)

-/

 Jointly training scene understanding with control
oolicies

* Learning memory and longer term temporal
features

Alex Kendall © Wayve 2019



Future challenges for scene understanding

Giving teedback and learning:

* SUrpAssing human demonstration learning,
reward design

* Hierarchical or natural language interfaces

» Satety and understanding causal decision
making tactors in these models

Alex Kendall © Wayve 2019



A complete paradigm shift for AVs

» Low vehicle compute and sensor requirements

* Large training compute and data requirements

* Increased vehicle intelligence

* No reliance on HD-maps

 Ability to leverage simulation for training

« Abundance of open and interesting research questions!

Come work with our team wayve.ai/careers ‘@ W A Y \/ E
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https://wayve.ai/careers

Thank you & References

 Slides and publications: alexgkendall.com

« Technology demonstration videos: wayve.ai/blog
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