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Progression of scene 
understanding from 

2015 … to 2018
Badrinarayanan, Kendall, Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. PAMI, 2015.
Kendall, Gal and Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Scene understanding is beginning 
to work out in the wild..
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Outline of lecture
1. Motivate and define scene understanding
2. Learning representations of semantics, motion 

and geometry
3. Application to mobile robotics and 

autonomous driving
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Part 1: What is ’scene understanding’?
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A possible computer vision definition?

• “Holistic scene understanding … reasons jointly about regions, location, class and spatial extent of 
objects, presence of a class in the image, as well as the scene type.”

Yao, Fidler and Urtasun “Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation”, 
CVPR, 2012.

• “Scene understanding, in contrast to object recognition, attempts to analyze objects in context with 
respect to the 3D structure of the scene, its layout, and the spatial, functional, and semantic 
relationships between objects.”

Max Planck Institute for Intelligent Systems, Perceiving Systems homepage, retrieved August 2018.

• “Scene understanding is to analyze a scene by considering the geometric and semantic context of 
its contents and the intrinsic relationships between them.”

Indoor Scene Understanding in 2.5/3D: A Survey. Naseer et al. 2018.
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Scene Understanding for Autonomous Driving
3D Object Detection

Semantic Segmentation

Agent Prediction

HD Map

Driving Affordability Prediction

Autonomous 
Driving State 

Representation
Turning indicator detector

Traffic sign detection
…….
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Is this the best approach?
• Many KITTI metrics are at 90%+
• Are these metrics a good proxy for improving 

autonomous driving performance? 
• Can we enumerate a priori the information that 

is required for a task?
• Are these tasks the best intermediate 

representation?
• Can we consider scene understanding 

independently of control?
• Do we care about in-domain test data?

Stereo: 98.26%
Flow: 95.27%

Odometry: 99.45%

2D Object: 91.97%
3D Object 77.86%

Tracking 90.77%
Segmentation: 72.82%

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the KITTI vision benchmark suite.” CVPR, 2012.
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A possible neuroscientist’s definition
• “Studies in scene perception have shown that observers recognize a real-world scene at a single glance. During this 

expeditious process of seeing, the visual system forms a spatial representation of the outside world that is rich 
enough to grasp the meaning of the scene, recognizing a few objects and other salient information in the image, to 
facilitate object detection and the deployment of attention.”

Oliva. "Gist of the scene." Neurobiology of attention. 2005.

• “Scene understanding exists on a continuum. At one end is a very fast and seemingly effortless extraction of the 
scene's gist—often just its category name. At the other end is the slower and often effortful attachment of deeper 
meaning to the scene. I will adopt the lay person's definition of scene understanding—what is the scene about? What 
is the story that it is trying to tell?” Understanding scene understanding.”

Zelinsky. “Understanding scene understanding”. Frontiers in psychology, 2013.

• “There is little evidence suggesting any bias toward either scene-level or object-level recognition.”
Fei-Fei, Iyer, Koch, Perona. “What do we perceive in a glance of a real-world scene?”. Journal of Vision, 2007.
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A possible neuroscientist’s definition
• “It is possible to know every object and action in a scene and still 

not know what the scene is about—knowledge of these elements 
is, quite literally, not the whole story. Minimally, true 
understanding requires a more extensive filtering and ordering of 
this list to capture only those objects, actions, and events that are 
important to a viewer's interpretation.”

Zelinsky. “Understanding scene understanding”. 
Frontiers in psychology, 2013.
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“We have a brain for one reason and one reason only -- that’s to produce 

adaptable and complex movements. Movement is the only way we have 

affecting the world around us… I believe that to understand movement 

is to understand the whole brain. And therefore it’s important to 

remember when you are studying memory, cognition, sensory 

processing, they’re there for a reason, and that reason is action.”

Prof Daniel Wolpert,  TED 2011
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How I think about scene understanding:

Scene understanding is to extract a 
minimal representation of the world 
which can be used to evaluate action.
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Scene Understanding Topology

• Input sensory data, !
• Scene understanding model, "(⋅), to learn 

representation, z = "(!)
• Policy model, ((⋅), to learn output(s) such as decision, action, 

auxiliary representations, ) = ( *
• Dynamics/transition/prediction model, + ⋅ , to predict future 

states, *,-. = + ), *
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A representation learning perspective

1.  Form a world model, to model the global dynamics and explain the world:

• Ha and Schmidhuber. Recurrent world models facilitate policy evolution. NeurIPS, 2018. 

• Srinivas, Jabri, Abbeel, Levine, and Finn. Universal planning networks. ICML, 2018.

• Burda, et al. Large-scale study of curiosity-driven learning. arXiv 2018.

2.  Or, we can learn a task-specific representation:

• Ghosh et al. Learning actionable representations with goal-conditioned policies. ICLR 2019

• Dwibedi et al. Learning actionable representations from visual observations. IROS, 2018.
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A recipe for a good representation
● Contain the hand-specified information which is believed to be necessary (but not 

sufficient) for the task. For driving, this includes semantics, motion and geometry,

● Be optimised with respect to the end task to learn the information sufficient for the task,

● Contain an excellent signal-to-noise ratio to observe the data required to make the 

decision. Therefore we need the right sensor configuration and transform the signal into a 
compressed, nuisance free & invariant representation.

● Eliminate any spurious correlations in the data. Disentangle the data and ensure the correct 
causal information is used.
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Part 2: Scene Understanding
• Learning semantics, motion and geometry
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Learning Semantics
With Semantic Segmentation
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Understanding Semantics

Many representations
• Image classification
• 2D & 3D detection
• Semantic segmentation
• Instance segmentation
• Panoptic segmentation
• Semantic embedding
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Semantic Segmentation Datasets
Difficulty tends to scale with diversity and number of classes.

• CamVid (small scale driving), 300 images, 12 classes
• CityScapes (clean driving scenes), 5k images, 20 classes, 84% mIoU
• Mapillary Vistas (diverse driving scenes), 25k images, 66 classes, 52% mIoU

• SUN RGB-D (indoor scenes), 5k images 
• NYUv2 (indoor Kinect data), 2k images

• Pascal VOC (object segmentation), 10k images, 20 classes, 85% mIoU
• MSCOCO (object segmentation), 200k images, 150 classes, 56% mIoU
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Summary of core ideas in semantic 
segmentation from 2015-2019

40
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2013 2014 2015 2016 2017 2018 2019

PASCAL VOC Leaderboard: Segmentation IoU by Year

Source: http://host.robots.ox.ac.uk/pascal/VOC/
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‘Fully’ Convolutional Neural Networks

• Prior deep learning approaches to 
semantic segmentation used CNNs 
to classify each image patch
• FCN proposed to interpret densely 

connected layers as 1x1 
convolutions
• Fine-tuned ImageNet classification 

models for pixel-wise semantic 
segmentation

Jonathan Long, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." CVPR. 2015.



Alex Kendall  ©  Wayve 2019

Encoder-Decoder Architectures

Encoder reduces spatial dimensions, 
enhancing feature complexity

Convolutional Encoder-Decoder
 

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Decoder recovers spatial dimensions
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. "SegNet: A deep convolutional encoder-decoder architecture for image segmentation." PAMI 2015
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Encoder-Decoder Architectures
• SegNet first trained a custom semantic 

segmentation architecture end-to-end

• ‘Invert’ classification networks like VGG to 
construct encoder-decoder

• Encoder downsamples spatial dimensions 
with max-pooling, building more depth in 
feature dimensions

• Decoder upsamples spatially with 
unpooling

• Efficient real-time performance and 
webdemo

2015 Webdemo:  http://mi.eng.cam.ac.uk/projects/segnet/

http://mi.eng.cam.ac.uk/projects/segnet/
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Skip-Connections

• Big improvement by 
introducing residual 
connections and skip 
connections
• Train deeper models and 

ensure information is 
aggregated from all stages 
in hierarchy, and from all 
stages of spatial 
subsampling

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.
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Improving the recognition front-end

• Improves 
semantic 
segmentation 
performance 
from AlexNet -> 
VGG -> Resnet

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
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Increasing Context

• With larger context, improve segmentation performance
• Better consistency across homogenous regions like sky, road
• Include more semantic meaning across scene and 

disambiguate challenging appearance
• Examples include:
• Dilated convolutions
• Pyramid pooling module
• Atrous Spatial Pyramid Pooling

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions.” ICLR (2016).
Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

• Approaches to aggregating context

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

• Qualitative results show 
improved class consistency

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions.” ICLR (2016).
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Qualitative results perform well on all scales

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context

• Atrous Spatial Pyramid Pooling module

Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).
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Increasing Context with PSPNet

• Atrous Spatial Pyramid Pooling module

Zhao, Hengshuang, et al. "Pyramid scene parsing network." CVPR. 2017.
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Hyper-parameters are important!

• Learning rate schedule commonly used:
• !" = !"$ 1 − '()*

+,-'()*
./0)*

, !"$ = 0.01, 34567 = 0.9
• Batch size and normalisation:
• In-place activated batchnorm
• Instance normalisation
• Very big GPU cluster 

Rota Bulò, Samuel, Lorenzo Porzi, and Peter Kontschieder. "In-place activated batchnorm for memory-optimized training of dnns." CVPR. 2018.
Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Instance normalization: The missing ingredient for fast stylization." arXiv preprint arXiv:1607.08022 (2016).
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Instance Segmentation

• Embedding / clustering [kendall et al., De Brabandere et al.]
• Region proposals [mask-rcnn, He et al.]
• Edge detection [deep watershed, Bai et al.]
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Summary of segmentation & open problems

• Performs very well with sufficient labelled data
• Large context and receptive fields help 

(but why do practical << theoretical receptive fields?)
• Rare classes are still hard (zero / few shot learning)
• Open set / unknown set classification is interesting
• Can we learn embeddings that reduce reliance on supervision?
• Robustness and modelling uncertainty
• Understanding reasoning and causality
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Learning Geometry
Depth and Shape Estimation 
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Deep Learning for Stereo Vision

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.

Depth Prediction Depth Prediction Uncertainty

Input Left Image Input Right Image
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Brief History of Stereo Vision
Engineered Features 

(e.g. CENSUS) Cost Volume Regularisation (e.g. 
SGM)

Disparity 
Estimation

Learned Cost (e.g. MC-CNN) Regularisation (e.g. 
SGM) Disparity Estimation

Learned Disparity Regression

J. Zbontar and Y. LeCun. Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR 2016.

N. Mayer et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.

H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and mutual information. CVPR 2005

Learned Disparity Regression, with Geometry

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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GC-Net: end to end deep learning for stereo

• Form differentiable cost volume using stereo geometry
• Sub-pixel disparity regression with soft ArgMax function
• Use 3-D convolutions to learn features with large context

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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Context-aware

• Saliency shows which 
part of the input 
signal affects output 
prediction
• Demonstrates the 

model has a large 
receptive field to 
learn disparity with 
context

Alex Kendall et al. End-to-End Learning of Geometry 
and Context for Deep Stereo Regression. ICCV, 2017.
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Monocular Depth from Recognition

• Eigen & Fergus regressed depth and 
surface normals from a CNN
• Showed that networks could learn 

regression tasks
• Estimating depth based on semantic 

and geometric cues
• Results on challenging indoor 

datasets

Eigen, and Fergus. "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture." ICCV. 2015.
Eigen, Puhrsch, and Fergus. "Depth map prediction from a single image using a multi-scale deep network." NeurIPS. 2014.
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Self-Supervised Depth Estimation

• From stereo or mono

Garg, Ravi, et al. "Unsupervised CNN for single view depth estimation: Geometry to the rescue.” ECCV, 2016.
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Monocular Self-Supervised Depth Estimation

Zhou, Tinghui, et al. "Unsupervised learning of depth and ego-motion from video." CVPR. 2017.



Alex Kendall  ©  Wayve 2019

We can learn depth and ego-motion using multi-view geometry with 
the camera intrinsics, K, predicted depth, ydepth, and egomotion, T.
Camera projection

Photometric reconstruction loss

Self-Supervised Learning of Geometry

Zhou, Tinghui, et al. "Unsupervised learning of depth and ego-motion from video." CVPR 2017.
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Remaining Challenges

• Occlusion, aperture problem, 
ambiguity, dynamic objects…

Ranjan, Anurag, et al. "Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation." CVPR. 2019.
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State of the art self-supervised depth out 
performs supervised learning!
• Multiview geometry and loss function

Guizilini, Vitor, et al. "PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation." CVPR (2019).
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Guizilini, Vitor, et al. "PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation." CVPR (2019).
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Learning Motion
With Optical Flow and Ego-Motion Representations
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Optical Flow with Deep Learning

• Learning dense correspondence between images
• No ground truth sensor -> use large synthetic datasets

Dosovitskiy, Alexey, et al. "Flownet: Learning optical flow with convolutional networks." ICCV. 2015.
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Improving FlowNets with Hierarchy & Geometry

• Use learnable 
cost-volumes
• Hierarchical 

refinement to 
reduce disparity 
domain

Sun, Deqing, et al. "PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume." CVPR. 2018.
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Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Video scene understanding literature

• Accurate non-real-time graphical models: Tripathi et al., 2015; 
Kundu et al. 2016; Budvytis et al. 2010
• Focusing on real-time performance with conditional computation: 

Shelhamer et al. 2016; Zhu et al. 2017
• One shot mask propagation: Tokmakov et al. 2017; Tsai et al. 2016; 

Vertens et al. 2017
• Only two-frame: Gadde et al., 2017; Zhu et al., 2017; Zhou et al. 2018
• RNN models which perform worse than single frame models! 

Patraucean et al. 2015; Valipour et al. 2017
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VideoSegNet Architecture

Monocular
Input Video

Supervised 
Semantic Loss

Self-supervised Depth 
& Ego-motion Loss

Self-supervised 
Optical Flow Loss
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Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Three tricks to enable Video SegNet

1. Account for motion and geometry when propagating features
• Unlike RNNs for vectors, convolutional RNN features are not aligned 

spatially over time due to motion

2. Provide a loss at each timestep
• Semantic are expensive to label
• We leverage self supervised learning for motion and geometry – for free at 

each timestep

3. Use temporal data augmentation
• Learn stable features by augmenting sequence length and label position
• Challenging to fit in memory!

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Self-Supervised Learning of Motion

We can learn optical flow, depth and ego-motion using self-supervised 
losses based on photometric reprojection error.
Key idea is to learn to warp image to next timestep using spatial 
transformer network
e.g. for optical flow,

Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." NIPS. 2015.
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Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Motion-GRU
• Align features temporally with a 

motion gated recurrent unit.
• Significantly improves 

performance and temporal 
consistency.

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Using multi-task self-supervision 

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2018.
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Holistic Scene Understanding
With Semantics, Motion and Geometry
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Multi-task Deep Learning

• We now want to learn a representation which contains the 
union of all the information we need
• We also want to use information from one task to benefit the 

performance on another task and vice-versa
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Multitask Scene Understanding Architecture

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Multi-task deep learning literature

• Machine Learning: Caruana. Multitask learning. Learning to learn, 1998

• Computer Vision: Kokkinos. UberNet: Training a universal convolutional neural network 
for low, mid, and high-level vision using diverse datasets and limited memory. CVPR, 
2017.

• Medical Imaging: SpineNet: automatically pinpointing classification evidence in spinal 
MRIs." MICCAI, 2016. 

• Natural Language Processing: Collobert and Weston. A unified architecture for natural 
language processing. ICML, 2008.

• Speech Recognition: Huang et al. Cross-language knowledge transfer using multilingual 
deep neural network with shared hidden layers. ICASSP, 2013.

All previous methods use uniform or manually tuned weights
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Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Using Task Uncertainty as Weighting

• Weighting should vary with magnitude and difficulty of task
• A measure of uncertainty is a good proxy
• We consider homoscedastic uncertainty as task uncertainty 

as it does not vary with input data
• Formulate as maximum likelihood estimation
• Multitask model outperforms equivalent single trained models

For example, for two regression losses the loss is given by:

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Multi-task Deep Learning

• Other solutions now proposed:
• GradNorm: normalise gradients 

between various tasks
• Multi-objective normalisation to a 

Pareto optimal solution
• Taskonomy: empirically 

measuring the related-ness or 
distance between tasks and how 
representations should relate

Chen, Zhao, et al. "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks." arXiv preprint arXiv:1711.02257 (2017).
Sener, Ozan, and Vladlen Koltun. "Multi-task learning as multi-objective optimization." Advances in Neural Information Processing Systems. 2018.
Zamir, Amir R., et al. "Taskonomy: Disentangling task transfer learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Let’s take a break!
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Part 3: Autonomous Driving
• Some Historical Background

• Why do we need computer vision when we can learn end-to-end for action?

• Can we understanding what we don’t know?

• How do we get enough data?

• How do we interpret and debug deep learning representations?
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Machine Learning for 
Autonomous Driving

Some Historical Background
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1989 ALVINN: End-to-End Imitation Learning

Pomerleau, Dean A. ”ALVINN: An autonomous land vehicle in a neural network." Advances in neural information processing systems. 1989.
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2016 NVIDIA: Lane Following on Highways

Bojarski, Mariusz, et al. "End to end learning for self-driving cars." arXiv preprint arXiv:1604.07316 (2016).
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Deep reinforcement learning on a self 
driving car is possible!
• Data-efficiency: learning to lane follow from 11 

training episodes (15 mins) 

• Sparse reward: drive as far as possible without 
safety-driver intervention 

• End-to-end deep learning from image input 

• All optimisation using on-board computer 

Alex Kendall et al. "Learning to Drive in a Day” International Conference on Robotics and Automation. 2019.
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Urban driving with end-to-end machine learning

Wayve et al. Urban Driving with Conditional Imitation Learning, Under Review, (2019)
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Why do we need computer 
vision when we can learn 

end-to-end for action?
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• Effect of 
computer 
vision on 
performance 
for control in 
simulation

Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. Does Computer Vision Matter for Action? Science Robotics, 4(30), 2019
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Urban driving with end-to-end machine learning

Wayve et al. Urban Driving with Conditional Imitation Learning, Under Review, (2019)
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Data Collection from Human Demonstration
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Autonomous Driving Demonstration – Complex Roads
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Autonomous Driving Demonstration – Interaction with Traffic
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Autonomous Driving Demonstration – Vehicle Following
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Modelling Uncertainty
Understanding what we don’t know
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Why do we need to model uncertainty?

• Active learning: important to generate a learning curriculum, 
data is very biased with long tail distribution problems
• For safety: important to know when our model isn’t confident
• For representation learning: to fuse sensory information
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What kind of uncertainty can we model?

Epistemic uncertainty
• Measures what your model doesn’t know
• Can be explained away by unlimited data

Aleatoric uncertainty
• Measures what you can’t understand from the data
• Can be explained away by unlimited sensing

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural Safety, 31(2):105–112. 
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Modeling Epistemic Uncertainty with 
Bayesian Deep Learning
• We can model epistemic uncertainty in deep learning models using 

Monte Carlo dropout sampling at test time.
• Dropout sampling can be interpreted as sampling from a 

distribution over models.

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS, 2017.
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Aleatoric Uncertainty with Probabilistic 
Deep Learning

!", !$% = '())

+,-- = " − !" %

!"/ = !" + 12 12 ∼ 4(0, !$%)

+,-- = 1
782

9,':;<)=>,--?@:>,A"(!"/)

!" = '())

+,-- = " − !" %

2 !$% + log !$

+,-- = 9,':;<)=>,--?@:>,A"(!"/)

Deterministic Deep Learning Probabilistic Deep Learning

Model

Regression

Classification

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS, 2017.
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Probabilistic Loss Derivation

!"#$$%"& '() = 1
2-./

01
213 4
/54

We want to directly regress this probability distribution function. 

Therefore, forming a negative log likelihood loss:

67$$ = − log 1
2-./

01
213 4
/54 = < − = /

2./ + log(.) + A7&$B"&B

We can ignore the constant term. We want to constrain . to be positive real, 

therefore we regress s ∶= log(./).

67$$ = 1
2 0

1E F − GF / +
1
2 $
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Train/Test Distribution Shift
• Aleatoric uncertainty remains constant while epistemic 

uncertainty increases for out of dataset examples!

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS, 2017.
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Qualitative comparison
• Epistemic uncertainty is modeling uncertainty
• Aleatoric uncertainty is sensing uncertainty
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Bayesian Deep Learning for Segmentation

Input Image Semantic Segmentation Uncertainty

Alex Kendall et al. Bayesian SegNet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. BMVC 2017
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Bayesian Deep Learning for Stereo Vision

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.

Depth Prediction Depth Prediction Uncertainty

Input Left Image Input Right Image
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How do we get 
enough data?

Learning to Drive in Simulation With no Real-World Labels
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Prior Approaches to Sim2Real

• Photo-realistic simulation
• Transfer learning and fine-tuning
• Intermediate representation like segmentation

• M. Mueller et al. Driving Policy Transfer via 
Modularity and Abstraction. CoRL, 2018. 

• Domain randomisation
• Andrychowicz et al. Learning dexterous in-hand manipulation. arXiv 2018. 
• Tobin et al. Domain randomization and generative models for robotic 

grasping. IROS, 2018. 
• Peng et al. Sim-to-real transfer of robotic control with dynamics 

randomization. ICRA, 2018. 
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Can we train real-world models in 
simulated worlds?

• Zero shot sim2real
• Learn to project to a latent 

space for domain 
translation and control 
jointly
• Demonstrate this method 

can drive 3km+ on public 
UK roads

dsim dreal

Zd ∈{sim, real}
Common latent space

Xreal

ĉ

Xsim, c

Deployment
Training

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Learning to Drive from Simulation without Real World Labels

Learning to Drive from Simulation without Real World Labels

A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V. Lam, A. Kendall
research@wayve.ai

Abstract

This work demonstrates a method for transferring a vision-based driving policy for
following a lane in simulation to a physical vehicle on a real rural road. Our method
is “zero-shot” in the sense that the training process does not have access to expert
demonstrations in the real world driving scenarios. Our approach leverages recent ad-
vances in image-to-image translation to achieve domain transfer while jointly learning
a single-camera control policy from simulation control.

Model and Losses

The model architecture consists of an image translator (based on UNIT [1] with an
LSGAN [2] loss), discriminators, and a controller. The encoders Esim,real map input
images from their respective domains to a latent space Z which is used for predicting
vehicle control ĉ.

This common latent space is learned through direct and cyclic losses as part of learn-
ing image translation jointly with control.

dsim dreal

Zd �{sim, real}
Common latent space

Xsim
Xreal

c

�recon�recon

1.
2. 2.

1.

(a) Reconstruction loss

dsim dreal

Zd �{sim, real}
Common latent space

�

�cyc

1.
4.

3. 2.

Xsim, c �Xsim

(b) Cyclic recon. loss

�controldsim dreal

Zd �{sim, real}
Common latent space

Xsim, c Xreal

�

1.

2.

(c) Control loss

�cyc controldsim dreal

Zd �{sim, real}
Common latent space

�

Xsim, c

1.

4.

2.
3.

�Xsim

(d) Cyclic control loss

Reconstruction Loss Xrecon
d = Gd(Ed(Xd))

Cyclic Reconstruction Loss Xcyc
d = Gd(EdÕ(GdÕ(Ed(Xd))))

Control Loss ĉ = C(Ed(Xd))
Cyclic Control Loss ĉcyc = C(EdÕ(GdÕ(Ed(Xd))))
Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Image Translation

Qualitative examples of the translation: the top half shows examples from a simulated
environment while the bottom half shows translation from real images.

Original Reconstructed Translated Cyclic

Overview

Results

Performance is assessed using open loop metrics, considering the Mean Absolute Error
(MAE) of each method against a test dataset, as well as a weighted metric which seeks
to address the inherent data imbalance present in driving data (Bal-MAE). In addition,
this method is evaluated closed-loop by measuring the distance per intervention (DPI)
during operation on a private rural road. Our method proved capable of solving a simple
driving task using solely simulated control labels, driving 3km without intervention.

Table 1: Open-loop metrics (MAE, Bal-MAE) and closed-loop driving performance (DPI)

for rural lane following. For policies unable to drive a 250m lap with Æ 1 intervention,

we terminated at one lap (†).

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23†

Simple Transfer 0.055 0.056 0.265 0.272 9†

Real-to-Sim Translation - - 0.261 0.234 10†

Sim-to-Real Translation - - 0.059 0.045 28†

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 15†

Ours 0.017 0.018 0.081 0.087 >3000

Conclusion

Learning a driving policy from simulation has many advantages: training data is cheap,
auxiliary ground truth information can be provided with ease, and the vehicle can be put
in situations that are di�cult or dangerous to undertake in reality. Previously, with the
substantial gap in complexity between the two domains, it was considered infeasible to
transfer driving policies from simulation to the real world without a considerable addi-
tional cost in data gathering. This work provides evidence that end-to-end policy learning
and simulation-to-reality transfer are highly promising directions for the development of
autonomous driving systems.

References

[1] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised Image-to-Image Transla-
tion Networks. In Advances in Neural Information Processing Systems (NIPS), 2017.
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Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Comparison to Baseline Methods

Learning to Drive from Simulation without Real World Labels

A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V. Lam, A. Kendall
research@wayve.ai

Abstract

This work demonstrates a method for transferring a vision-based driving policy for
following a lane in simulation to a physical vehicle on a real rural road. Our method
is “zero-shot” in the sense that the training process does not have access to expert
demonstrations in the real world driving scenarios. Our approach leverages recent ad-
vances in image-to-image translation to achieve domain transfer while jointly learning
a single-camera control policy from simulation control.

Model and Losses

The model architecture consists of an image translator (based on UNIT [1] with an
LSGAN [2] loss), discriminators, and a controller. The encoders Esim,real map input
images from their respective domains to a latent space Z which is used for predicting
vehicle control ĉ.

This common latent space is learned through direct and cyclic losses as part of learn-
ing image translation jointly with control.

(a) Reconstruction loss (b) Cyclic recon. loss (c) Control loss (d) Cyclic control loss

Reconstruction Loss Xrecon
d = Gd(Ed(Xd))

Cyclic Reconstruction Loss Xcyc
d = Gd(EdÕ(GdÕ(Ed(Xd))))

Control Loss ĉ = C(Ed(Xd))
Cyclic Control Loss ĉcyc = C(EdÕ(GdÕ(Ed(Xd))))
Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Image Translation

Qualitative examples of the translation: the top half shows examples from a simulated
environment while the bottom half shows translation from real images.

Original Reconstructed Translated Cyclic

Overview

Results

Performance is assessed using open loop metrics, considering the Mean Absolute Error
(MAE) of each method against a test dataset, as well as a weighted metric which seeks
to address the inherent data imbalance present in driving data (Bal-MAE). In addition,
this method is evaluated closed-loop by measuring the distance per intervention (DPI)
during operation on a private rural road. Our method proved capable of solving a simple
driving task using solely simulated control labels, driving 3km without intervention.

Table 1: Open-loop metrics (MAE, Bal-MAE) and closed-loop driving performance (DPI)

for rural lane following. For policies unable to drive a 250m lap with Æ 1 intervention,

we terminated at one lap (†).

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23†

Simple Transfer 0.055 0.056 0.265 0.272 9†

Real-to-Sim Translation - - 0.261 0.234 10†

Sim-to-Real Translation - - 0.059 0.045 28†

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 15†

Ours 0.017 0.018 0.081 0.087 >3000

Conclusion

Learning a driving policy from simulation has many advantages: training data is cheap,
auxiliary ground truth information can be provided with ease, and the vehicle can be put
in situations that are di�cult or dangerous to undertake in reality. Previously, with the
substantial gap in complexity between the two domains, it was considered infeasible to
transfer driving policies from simulation to the real world without a considerable addi-
tional cost in data gathering. This work provides evidence that end-to-end policy learning
and simulation-to-reality transfer are highly promising directions for the development of
autonomous driving systems.
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How do we interpret and 
debug deep learning 

representations?
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Inspecting the state 
for traffic light signal

!"#$%& ' ()*#&+*,

(-%.

Learn to decode the high 
dimensional state
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Inspecting 
the state 
for traffic 
light signal, 
semantics 
and depth
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Model-Based Saliency

• Faster than input-perturbation analysis and more accurate 
than gradient based saliency methods.

Dabkowski and Gal. "Real time image saliency for black box classifiers." NeurIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation." ICCV. 2017.
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Model-Based Saliency

! = #$ %(') + #* ∇%(') + #,!- . ' / % ' + #0!- . ' / 1 − % '
345

Suppose . / is our driving model and % / is our saliency model 
and ! / is our loss function for the driving model and the 
operator ' / % degrades the image with noise.

Sparse saliency mask

Smooth saliency mask

Informative saliency mask

Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers." NeurIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation." ICCV. 2017.
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Model-Based Saliency
Suppose ! " is our driving model and # " is our saliency model 
and $ " is our loss function for the driving model and the 
operator % " # degrades the image with noise.

Sparse saliency mask

Smooth saliency mask

Informative saliency mask

Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers." NeurIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation." ICCV. 2017.

$ = '( #(%) + ', ∇#(%) + '.$/ ! % " # % + '0$/ ! % " 1 − # %
345



Alex Kendall  ©  Wayve 2019Alex Kendall  ©  Wayve 2019

Conclusions
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Autonomous Driving

● Incredibly difficult action space: 
long term strategy, cooperation

● Very basic state space, often 
discrete, fully observable and 
noise-free

Games like Go & DOTA

● Quite easy action space: stop, 
go, left, right motion primitives

● Super challenging state space: 
manifold of natural images!

This needs to be solved by the computer vision community!
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Future challenges for scene understanding

Deploying deep learning to robotics
•Efficient, robust and multi-task representations
•Metrics need to reflect end-to-end system 
performance
•Jointly training scene understanding with control 
policies
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Future challenges for scene understanding

Structural Building Blocks:
•What happens next? Develop prediction and 
dynamics models (but not in RGB space!)
•Jointly training scene understanding with control 
policies
•Learning memory and longer term temporal 
features
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Future challenges for scene understanding

Giving feedback and learning:
•Surpassing human demonstration learning, 
reward design
•Hierarchical or natural language interfaces
•Safety and understanding causal decision 
making factors in these models
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A complete paradigm shift for AVs

• Low vehicle compute and sensor requirements
• Large training compute and data requirements
• Increased vehicle intelligence
• No reliance on HD-maps
• Ability to leverage simulation for training
• Abundance of open and interesting research questions!

Come work with our team wayve.ai/careers

https://wayve.ai/careers
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Thank you & References

• Slides and publications: alexgkendall.com

• Technology demonstration videos: wayve.ai/blog
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