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Bayesian deep learning

For example:
y = []
for _ in xrange (10):
y.append (model.output (x, dropout=True))
y_mean = numpy.mean (y)
y_var = numpy.var (y)

s W N =

1of 5



Bayesian deep learning

» What if we could capture uncertainty in modern computer vision?
» Detect anomalies with image data
> ldentify adversarial examples
» Learn with small amounts of labelled image data
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Uncertainty in Computer Vision

» Not a new idea...

» Particle filtering [Blake, Curwen, and Zisserman, 1993],
» Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]

Convolutional Encoder-Decoder

Pooling Indices

RGB Image I Conv + Batch Normalisation + RelU Segmentation
[ Pooling [ Upsampling Softmax

3of 5



Uncertainty in Computer Vision

» Not a new idea...
» Particle filtering [Blake, Curwen, and Zisserman, 1993],
» Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]
» Using BDL we can estimate uncertainty for modern computer
vision models.
E.g., Segnet: [Badrinarayanan, Kendall, and Cipolla, 2015]
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Uncertainty in Computer Vision

» Not a new idea...
» Particle filtering [Blake, Curwen, and Zisserman, 1993],
» Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]

» Using BDL we can estimate uncertainty for modern computer

vision models.
E.g., Segnet: [Badrinarayanan, Kendall, and Cipolla, 2015]

Convolutional Encoder-Decoder

Pooling Indices

RGB Image I Conv + Batch Normalisation + RelU Segmentation
[ Pooling [ Upsampling Softmax

» But what uncertainty do we even want?
There are many different types of uncertainty, including:
» Aleatoric uncertainty, capturing inherent noise in the data
» Epistemic uncertainty, capturing model's lack of knowledge
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» Aleatoric uncertainty, capturing inherent noise in the data
» Epistemic uncertainty, capturing model’s lack of knowledge

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Episternic Uncertainty

What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? [Kendall & Gal, NIPS, 2017]



Uncertainty in Computer Vision

» Aleatoric uncertainty, capturing inherent noise in the data
» Epistemic uncertainty, capturing model’s lack of knowledge

Can we detect anomalies with Segnet?

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance | variance
Make3D /4 | Make3D | 5.76 0.506 7.73
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87
(a) Regression

What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? [Kendall & Gal, NIPS, 2017]
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2. We jointly model aleatoric and epistemic uncertainty
with deep learning. Our model’s uncertainty for pixel output ; is given by:
z

1 1

TS (;Z f(x:))

T T T

Using Monte Carlo dropout samples, T, learning aleatoric uncertainty with loss:

Loss(6) = "l = S+ logota
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1. Types of Uncertainty

In Bayesian modelling, there are two main

types of uncertainty we can model [1]

+ Epistemic uncertainty: uncertainty in the
model, capturing what our model
doesn’t know due to lack of training
data. Can be explained away with
increased training data.

Come to our Poster!
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3. SOTA performance
for semantic segmentation and per-

pixel depth regression datasets.

We use a convolutional network
based on DenseNet [20] with 103
layers and 9.4M parameters
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rent from training set),

« Epister \certainty increases with
detreaslng tmmng size,

« Epistemic uncertainty increases with
examples out of the training distribution.

Modelling uncertainty allows the:
model to learn to attenuate the
effect from erroneous labels and
learn loss attenuation.

nput image
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Per-pixel depth regression

without expensive e ‘samples.

which are different from training data,

* Noisy data, because we can learn to attenuate erroneous labels. * Small datasets where the training data is
spa
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What Uncertainties Do We Need in Bayesian Deep Learning for
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