Geometric Loss Functions for Camera Pose Regression with Deep Learning

IEEE 2017 Conference on Computer

Alex Kendall and Roberto Cipolla, University of Cambridge Vision and Patiern Recognition

@alexgkendall AT .

- A
Wiz 201 7

X%Eé‘ﬁ}%é’ﬁ @ Webdemo: http://mi.eng.cam.ac.uk/projects/relocalisation

P —
R -
> = >
>~ & s

il el
- \/j

The Kidnapped This work: Geometric Loss Function
Robot Problem > Use reprojection function, &, and train on reprojection of 3D
|s to relocalise within a geometry in 2D image space
pre-explored > Using ideas from bundle adjustment as a differentiable training loss
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| | ) _ : : » Temporal localisation and end-to-end learning for SLAM
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