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Outline of talk
1. Recipe for success for representation learning
2. Strategy for training data
3. Interpretability & verification
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Machine Learning for 
Autonomous Driving

Some Background
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1989 ALVINN: End-to-End Imitation Learning

Pomerleau, Dean A. ”ALVINN: An autonomous land vehicle in a neural network." Advances in neural information processing systems. 1989.
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2016 NVIDIA: Lane Following on Highways

Bojarski, Mariusz, et al. "End to end learning for self-driving cars." arXiv preprint arXiv:1604.07316 (2016).
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Urban driving with end-to-end machine learning

Alex Kendall et al. Learning to Drive in a Day. ICRA, 2019
Wayve, https://wayve.ai/blog/driving-like-human (2019)

https://wayve.ai/blog/driving-like-human
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A recipe for 
representing driving
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The Self-Driving State Representation Today
3D Object Detection

Semantic Segmentation

Agent Prediction

HD Map

Driving Affordability Prediction

Autonomous 
Driving 

Representation
Turning indicator detector

Traffic sign detection
…….
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We can’t enumerate the 
information we need for 

every last edge case

Billions of dollars and 10 years of commercial resources can’t do 
it in a constrained environment like Phoenix, Arizona.
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A recipe for a good representation
1. Needs to encode information that we believe is necessary 

(but not sufficient) for the task
Ø For driving, this includes semantics, motion and geometry

2. Should also be optimised w.r.t. the end task
Ø Therefore we need an end to end learning signal

3. The decision must be observable in the input data
Ø We need the right sensor type and configuration

4. Our representation must have a very good signal to noise ratio
Ø We must transform the signal into a compressed, 

nuisance free & invariant representation
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Progression of 
computer vision from 

2015 … to 2018
Badrinarayanan, Kendall, Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. PAMI, 2017.
Kendall, Gal and Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Training Data
How much and what type do we need?
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How much data do we need?
• It’s not the amount, but the type of data!
• Not all data is created equal
• Important you create a driving curriculum and can seek the 

right data to improve 
• Off-policy / dash cam data is not good enough!
• Beneficial to have control over what data is collected
• Probably need to have on-policy data
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Driving data is exceptionally biased

• How much of the state space do we need to 
explore to learn a good representation?
• If we need training examples densely across all 

state space, human driving data is not sufficient
• But exploration is dangerous in the real world…
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Can we train real-world models in 
simulated worlds?

• Zero shot sim2real
• Learn to project to a latent 

space for domain 
translation and control 
jointly
• Demonstrate this method 

can drive 3km+ on public 
UK roads

dsim dreal

Zd ∈{sim, real}
Common latent space

Xreal

ĉ

Xsim, c

Deployment
Training

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Learning to Drive from Simulation without Real World Labels

Learning to Drive from Simulation without Real World Labels

A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V. Lam, A. Kendall
research@wayve.ai

Abstract

This work demonstrates a method for transferring a vision-based driving policy for
following a lane in simulation to a physical vehicle on a real rural road. Our method
is “zero-shot” in the sense that the training process does not have access to expert
demonstrations in the real world driving scenarios. Our approach leverages recent ad-
vances in image-to-image translation to achieve domain transfer while jointly learning
a single-camera control policy from simulation control.

Model and Losses

The model architecture consists of an image translator (based on UNIT [1] with an
LSGAN [2] loss), discriminators, and a controller. The encoders Esim,real map input
images from their respective domains to a latent space Z which is used for predicting
vehicle control ĉ.

This common latent space is learned through direct and cyclic losses as part of learn-
ing image translation jointly with control.

dsim dreal

Zd �{sim, real}
Common latent space

Xsim
Xreal

c

�recon�recon

1.
2. 2.

1.

(a) Reconstruction loss

dsim dreal

Zd �{sim, real}
Common latent space

�

�cyc

1.
4.

3. 2.

Xsim, c �Xsim

(b) Cyclic recon. loss

�controldsim dreal

Zd �{sim, real}
Common latent space

Xsim, c Xreal

�

1.

2.

(c) Control loss

�cyc controldsim dreal

Zd �{sim, real}
Common latent space

�

Xsim, c

1.

4.
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(d) Cyclic control loss

Reconstruction Loss Xrecon
d = Gd(Ed(Xd))

Cyclic Reconstruction Loss Xcyc
d = Gd(EdÕ(GdÕ(Ed(Xd))))

Control Loss ĉ = C(Ed(Xd))
Cyclic Control Loss ĉcyc = C(EdÕ(GdÕ(Ed(Xd))))
Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Image Translation

Qualitative examples of the translation: the top half shows examples from a simulated
environment while the bottom half shows translation from real images.

Original Reconstructed Translated Cyclic

Overview

Results

Performance is assessed using open loop metrics, considering the Mean Absolute Error
(MAE) of each method against a test dataset, as well as a weighted metric which seeks
to address the inherent data imbalance present in driving data (Bal-MAE). In addition,
this method is evaluated closed-loop by measuring the distance per intervention (DPI)
during operation on a private rural road. Our method proved capable of solving a simple
driving task using solely simulated control labels, driving 3km without intervention.

Table 1: Open-loop metrics (MAE, Bal-MAE) and closed-loop driving performance (DPI)

for rural lane following. For policies unable to drive a 250m lap with Æ 1 intervention,

we terminated at one lap (†).

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23†

Simple Transfer 0.055 0.056 0.265 0.272 9†

Real-to-Sim Translation - - 0.261 0.234 10†

Sim-to-Real Translation - - 0.059 0.045 28†

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 15†

Ours 0.017 0.018 0.081 0.087 >3000

Conclusion

Learning a driving policy from simulation has many advantages: training data is cheap,
auxiliary ground truth information can be provided with ease, and the vehicle can be put
in situations that are di�cult or dangerous to undertake in reality. Previously, with the
substantial gap in complexity between the two domains, it was considered infeasible to
transfer driving policies from simulation to the real world without a considerable addi-
tional cost in data gathering. This work provides evidence that end-to-end policy learning
and simulation-to-reality transfer are highly promising directions for the development of
autonomous driving systems.

References

[1] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised Image-to-Image Transla-
tion Networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

[2] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul
Smolley. Least squares generative adversarial networks. In Computer Vision (ICCV),

2017 IEEE International Conference on, pages 2813–2821. IEEE, 2017.
[3] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Addressing appearance change

in outdoor robotics with adversarial domain adaptation. In IEEE International Con-

ference on Intelligent Robots and Systems (IROS), 2017.

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Comparison to Baseline Methods

Learning to Drive from Simulation without Real World Labels

A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V. Lam, A. Kendall
research@wayve.ai

Abstract

This work demonstrates a method for transferring a vision-based driving policy for
following a lane in simulation to a physical vehicle on a real rural road. Our method
is “zero-shot” in the sense that the training process does not have access to expert
demonstrations in the real world driving scenarios. Our approach leverages recent ad-
vances in image-to-image translation to achieve domain transfer while jointly learning
a single-camera control policy from simulation control.

Model and Losses

The model architecture consists of an image translator (based on UNIT [1] with an
LSGAN [2] loss), discriminators, and a controller. The encoders Esim,real map input
images from their respective domains to a latent space Z which is used for predicting
vehicle control ĉ.

This common latent space is learned through direct and cyclic losses as part of learn-
ing image translation jointly with control.

(a) Reconstruction loss (b) Cyclic recon. loss (c) Control loss (d) Cyclic control loss

Reconstruction Loss Xrecon
d = Gd(Ed(Xd))

Cyclic Reconstruction Loss Xcyc
d = Gd(EdÕ(GdÕ(Ed(Xd))))

Control Loss ĉ = C(Ed(Xd))
Cyclic Control Loss ĉcyc = C(EdÕ(GdÕ(Ed(Xd))))
Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Image Translation

Qualitative examples of the translation: the top half shows examples from a simulated
environment while the bottom half shows translation from real images.

Original Reconstructed Translated Cyclic

Overview

Results

Performance is assessed using open loop metrics, considering the Mean Absolute Error
(MAE) of each method against a test dataset, as well as a weighted metric which seeks
to address the inherent data imbalance present in driving data (Bal-MAE). In addition,
this method is evaluated closed-loop by measuring the distance per intervention (DPI)
during operation on a private rural road. Our method proved capable of solving a simple
driving task using solely simulated control labels, driving 3km without intervention.

Table 1: Open-loop metrics (MAE, Bal-MAE) and closed-loop driving performance (DPI)

for rural lane following. For policies unable to drive a 250m lap with Æ 1 intervention,

we terminated at one lap (†).

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23†

Simple Transfer 0.055 0.056 0.265 0.272 9†

Real-to-Sim Translation - - 0.261 0.234 10†

Sim-to-Real Translation - - 0.059 0.045 28†

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 15†

Ours 0.017 0.018 0.081 0.087 >3000

Conclusion

Learning a driving policy from simulation has many advantages: training data is cheap,
auxiliary ground truth information can be provided with ease, and the vehicle can be put
in situations that are di�cult or dangerous to undertake in reality. Previously, with the
substantial gap in complexity between the two domains, it was considered infeasible to
transfer driving policies from simulation to the real world without a considerable addi-
tional cost in data gathering. This work provides evidence that end-to-end policy learning
and simulation-to-reality transfer are highly promising directions for the development of
autonomous driving systems.
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tion Networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

[2] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul
Smolley. Least squares generative adversarial networks. In Computer Vision (ICCV),

2017 IEEE International Conference on, pages 2813–2821. IEEE, 2017.
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Interpretability & 
Verification of Deep 

Learning Representations
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Model-Based Saliency

! = #$ %(') + #* ∇%(') + #,!- . ' / % ' + #0!- . ' / 1 − % '
345

Suppose . / is our driving model and % / is our saliency model 
and ! / is our loss function for the driving model and the 
operator ' / % degrades the image with noise.

Sparse saliency mask

Smooth saliency mask

Informative saliency mask

Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers." NeurIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation." ICCV. 2017.



Alex Kendall  ©  Wayve 2019

Model-Based Saliency
Suppose ! " is our driving model and # " is our saliency model 
and $ " is our loss function for the driving model and the 
operator % " # degrades the image with noise.

Sparse saliency mask

Smooth saliency mask

Informative saliency mask

Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers." NeurIPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation." ICCV. 2017.

$ = '( #(%) + ', ∇#(%) + '.$/ ! % " # % + '0$/ ! % " 1 − # %
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Inspecting the state 
for traffic light signal

!"#$%& ' ()*#&+*,

(-%.

Learn to decode the high 
dimensional state
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Inspecting 
the state 
for traffic 
light signal, 
semantics 
and depth
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Which metrics do we optimise?

Must move away from component based verification
Improving individual components is no longer a proxy for 
improving system performance
• It assumes the interface between components is sufficient
• E.g. most KITTI metrics are at 90%+, does improving these 

metrics increase autonomous driving performance?
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Mean Scenario Success

Frequency of 
Occurrence 

During Driving

Performance 
Metric

We need to consider complexity of autonomy, not just intervention metrics.
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Conclusions
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• Possible to enumerate all 
scenarios
• Analytical safety guarantees
• Limited complexity

• Unachievable to identify all 
edge-cases
• Too complex for safety 

guarantees
• Requires extremely large 

engineering effort

• Low engineering effort to 
create demo
• Brittle representation
• No performance guarantees

• Excels with increasing data and 
scale
• Can learn powerful 

representations which generalise
• Validate with statistical evidence

Constrained Setting Open World

H
um

an
D

es
ig

n
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Autonomous Driving

● Incredibly difficult action space: 
long term strategy, cooperation

● Very basic state space, often 
discrete, fully observable and 
noise-free

Games like Go & DOTA

● Quite easy action space: stop, 
go, left, right motion primitives

● Super challenging state space: 
manifold of natural images!

This needs to be solved by the computer vision community!



Alex Kendall  ©  Wayve 2019

A complete paradigm shift for AVs

• Low vehicle compute and sensor requirements
• Large training compute and data requirements
• Increased vehicle intelligence
• No reliance on HD-maps
• Ability to leverage simulation for training
• Abundance of open and interesting research questions!

Come work with our team wayve.ai/careers

https://wayve.ai/careers

