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Deploying Deep Learning for Driving
Alex Kendall @ CVPR, Long Beach, June 2019
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Qutline of talk

1. Recipe for success for representation learning

2. Understanding what we don’t know

3. Strategy for training dato

4. Interpretability & verification
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Machine Learning for
Autonomous Driving

Some Historical Background
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1989 ALVINN: End-to-End Imitation Learning

What’s Hidden in the Hidden Layers?

The contents can be easy to find with a geometrical problem,
but the hidden layers have yet to give up all their secrets
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Figure 1: ALVINN Architecture

David S. To:t;'etzk)';nd Dean A. Pomerleau

tions, we fed the network road images
taken under a wide varicty of viewing an-
gles and lighting conditions, It would be
impractical to try to collect thousands of
real road images for such a data set. In-
stead, we developed a synthetic road-
image gencrator that can create as many
training examples as we need.

To train the network, 1200 simulated
road images are presented 40 times each,
while the weights are adjusted using the
back-propagation learning algorithm.
This takes about 30 minutes on Carnegic
Mellon's Warp systolic-array supercom-
puter. (This machine was designed at
Carnegie Mellon and is built by General
Electric. It has a peak rate of 100 million
{loating-point operations per second and
can compute weight adjustments for
back-propagation networks at a rate of 20
million connections per second. )

Once it is trained, ALVINN can accu-
rately drive the NAVLAB vehicle at
about 3'%4 miles per hour along a path
through # wooded area adjoining the
Carnegie Mellon campus, under & vari-
ety of weather and lighting conditions.
This speed is nearly twice as fast as that
achieved by non-neural-network algo-
rithms running on the same vehicle. Part
of the reason for this is that the forward
pass of a back-propagation network can
be computed quickly. It takes about 200

AUGUST 1989 « BYTE 231

milliseconds on the Sun-3/160 worksta-  work chooses a representation in which
tion installed on the NAVLAB. hidden units act as detectors for complete

The hidden-layer representations AL-  roads at various positions and orienta-
VINN develops are interesting. When  tions. When trained on roads of variable
trained on roads of a fixed width, the net- continued

Photo 1: The NAVLAB autonomous navigation test-bed vehicle and the road used
for trial runs.

Pomerleau, Dean A. "ALVINN: An autonomous land vehicle in a neural network.” Advances in neural information processing systems. 1989.
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2016 NVIDIA: Lane Following on Highways

Output: vehicle control
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Bojarski, Mariusz, et al. "End to end learning for self-driving cars.” arXiv preprint arXiv:1604.07316 (2016).
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Urban driving with end-to-end machine learning

End-to-end deep learning

. @

Uncertainty propagation ' '

from sensing to action

Inputs: camera video and a Outputs: driving
sat-nav commands
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Alex Kendall et al. Learning to Drive in a Day. ICRA, 2019
Wayve, https://wayve.ai/blog/driving-like-human (2019)
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A recipe for
representing driving
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The Self-Driving State Representation Today

* 4 LA 3D Object Detection I
Jees - Semantic Segmentation

Agent Prediction

Autonomous
Turning indicator detector - Driving
HD Map Representation

Driving Affordability Prediction

Traffic sign detection
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A recipe for a good representation

1. Needs to encode information that we believe is necessary

(but not sufficient) for the task
> For driving, this includes semantics, motion and geometry

2. Should also be optimised w.rt. the end task
> Therefore we need an end to end learning signal

5. The decision must be observable in the input dato
> We need the right sensor type and configuration

4. Qur representation must have a very good signal to noise ratio
>  We must transform the signal into a compressed,
nuisance free & invariant representation
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Progression of
computer vision from

2015 ... O 2018

Badrinarayanan, Kendall, Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. PAMI, 2017.
Kendall, Gal and Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
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Modelling Uncertainty

Understanding what we don’t know
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What kind of uncertainty can we model?

Epistemic uncertainty
* Measures what you're model doesnt know
« Can be explained away by unlimited datao

Aleatoric uncertainty
« Measures what you can’t understand from the dato
« Can be explained away by unlimited sensing

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural Safety, 31(2):105-112.
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Modeling Epistemic Uncertainty with
Bayesian Deep Learning

* We can model epistemic uncertainty in deep learning models
using Monte Carlo dropout sampling at test time,

* Dropout sampling can be interpreted as sampling from o
distribution over models.

Convolutional Encoder-Decoder Stochastic Dropout Segmentation

Samples o _

Model Uncertainty
variance ‘, s
” - |
Vs

of o oly e
»

8.

RGB Image

I conv + Batch Normalisation + RelU
I propout M Pooling/Upsampling Softmax

P

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Aleatoric Uncertainty with Probabilistic
Deep Learning

Deterministic Deep Learning Probabilistic Deep Learning
Model [ 1=7C) [9,6%] = f(x)
. ly — 9l .
Regression Loss = |ly — 9| Loss = 262 +logd

Classification | Loss = SoftmaxCrossEntropy(9;)

1
Loss = Tz SoftmaxCrossEntropy(¥;)
t

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Train/Test Distribution Shift

» Aleatoric uncertainty remains constant while epistemic
uncertainty increases tor out of dataset examples!

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance variance
Make3D /4 | Make3D | 5.76 0.506 1703
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS, 2017.
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Qualitative comparison

« Epistemic uncertainty is modeling uncertainty
« Aleatoric uncertainty is sensing uncertainty

——

(a) Input Image (b) Ground Truth (c) Semantic Segmentation  (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Alex Kendall © Wayve 2019



Bayesian Deep Learning for Segmentation

Input Image Semantic Segmentation Uncertainty

Alex Kendall et al. Bayesian SegNet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. BMVC 2017
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Bayesian Deep Learning for Stereo Vision

Input Right Image

Dy W

Depth Prediction Depth Prediction Uncertainty

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
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Training Data

How much and what type do we need?
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Can we train real-world models in
simulated worlds?

e /ero shot sim?2reaql

* Learn to project to a latent
space for domain
translation and control
jointly

e Demonstrate this method

can drive 3km+ on public
UK roads

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Learning to Drive from Simulation without Real World Labels
i i » d 2 d d. Z ool d d 2o

Zd &{sim, real} a
Common latent space

real

d €{sim, real}

d €{sim, real
{ ) Common latent space

Common latent space

2.
C C C
(a) Reconstruction loss (b) Cyclic recon. loss (C) Control loss (d) Cyclic control loss
Reconstruction Loss X = Gu(Eq(Xq))
Cyclic Reconstruction Loss XV = Ga(Ep(Ga(EyXy))))
Control Loss ¢ =C(Eg(Xq))
Cyclic Control Loss ¢V = C(Ep(Ga(Eq(Xqg))))

Not shown: adversarial LSGAN loss, latent reconstruction loss, perceptual loss.

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Comparison to Baseline Methods

Simulation Real

MAE Bal-MAE MAE Bal-MAE DPI (metres)

Drive-Straight 0.043 0.087 0.019 0.093 23T

Simple Transfer ~ 0.055 0.056 0.265 0.272 9l

Real-to-Sim Translation - - 0.261 0.234 107

Sim-to-Real Translation - - 0.059 0.045 o8t

Latent Feature ADA [3] 0.040 0.047 0.032 0.071 151
Ours 0.017 0.018 0.081 0.087 >3000

Alex Bewley et al. Learning to Drive from Simulation without Real World Labels. ICRA, 2019.
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Interpreting &
Understanding Deep
Learning Representations
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Model-Based Saliency

Suppose f(+) is our driving model and m(-) is our saliency model
and L(+) is our loss function for the driving model and the
operator x - m degrades the image with noise.

.y
L= m(x)| + A,|Vm(x)| + 15L, f(x - m(x)) + A4l | flx- (1 — m(x))

Sparse saliency mask Informative saliency mask

Smooth saliency mask Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers.” NeurlPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation.” ICCV. 2017.
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Model-Based Saliency

Suppose f(+) is our driving model and m(-) is our saliency model
and L(+) is our loss function for the driving model and the
operator x - m degrades the image with noise.

~As
L = A |m@)| + A, |Vm(x)| + AsL (f(x : m(x))) + AL | f (x (1- m(x)))

Sparse saliency mask Informative saliency mask

Smooth saliency mask Uninformative inverse saliency mask

Dabkowski and Gal. "Real time image saliency for black box classifiers.” NeurlPS. 2017.
Fong and Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation.” ICCV. 2017.
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Inspecting the state
for traffic light signal

Xinput > Z > Ycontrol 08
Learn to decode the high -
dimensional state -
Yaux a2
0.0 - T i T — T
Red Amber Green Red & Amber R &G None
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Inspecting
the state
for traffic
light signal,
semantics
and depth
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Conclusions
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Games like Go & DOTA  Autonomous Driving

e Incredibly difficult action space: o Quite easy action space: stop,
long term strotegy, cooperation go, left, right motion primitives

e Very basic state space, often _
discrete, fully observable and o Super challenging state space:
noise-free / maniftold of natural images!

This needs to be solved by the computer vision community!
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A complete paradigm shift for AVs

» Low vehicle compute and sensor requirements

* Large training compute and data requirements

* Increased vehicle intelligence

* No reliance on HD-maps

 Ability to leverage simulation for training

« Abundance of open and interesting research questions!

Come work with our team wayve.ai/careers ‘@ W A Y \/ E
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