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Deep learning for computer vision

Image
Classification:
DINOSAUR

Output	vector

• low	spatial	dimensions
• high	feature	dimensions

Input	image

• high	spatial	dimensions
• low	feature	dimensions



ImageNet Classification

“Microsoft, Google Beat 
Humans at Image 

Recognition” 
New York Times 2016

“Inception v3 really does 
have superhuman abilities” 

MIT Technology Review 
2016



Computer vision driving deep learning research

Cutting	edge	deep	learning	research	has	
been	driven	by	ImageNet	classification:

• Very	deep	architectures	(ResNets [1],	
DenseNets)

• Geometric	priors	(low	rank	convolutions	
[2],	feature	groups)

• Feature	normalisation	(batch	norm	[3],	
layer	norm)

[1] Deep residual learning for image recognition. Kaiming He et al. CVPR 2016
[2] Training CNNs with Low-Rank Filters for Efficient Image Classification. Yani Ioannou et al., ICLR 2016
[3] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Sergey Ioffe and Christian Szegedy. arXiv 2015.



What are we trying to do in computer vision?

• “Computer	vision	… strives	to	give	
machines	the	ability	to	see”	(Szeliski,	2010)

• Vision	is	our	most	powerful	sense	(3	GB	per	
second	in	humans)

• Important	technology	for	us	to	design	any	
intelligent	robot	which	must	interact	with	
the	world	(medical,	automotive,	domestic,	
etc)



How do we learn to see?

We	aren’t	born	with	the	ability	to	see,	we	need	
to	learn!

• 4	months:	focusing,	hand-eye	coordination	
and	interest	in	faces	

• 6	months:	depth	perception	and	colour	vision	

• 9	months:	precision	grasping	and	interaction	

• 12	months:	object	recognition

Infant Vision: Birth to 24 Months of Age. https://www.aoa.org/patients-and-public/good-vision-throughout-life/childrens-vision/infant-vision-birth-to-24-months-of-age



Learning to see

• Suppose,	a	baby	experiences	1	saccade	per	
second,	for	8	hours	a	day	for	365	days

• 1×60×60×8×365	=	10,000,000		training	
examples	to	learn	to	see

• Similar	order	of	magnitude	to	the	training	
data	in	ImageNet?

But with this training data humans learn to 
perceive so much more than recognition!



Scene Understanding
Video Understanding, Semantics, Geometry, 

Depth, Location, Future Prediction, Ego-motion, 
Instance Segmentation, Object Detection



Semantics, Geometry and Motion

Alex Kendall and Roberto Cipolla. VideoSegNet: Self-Supervised Motion and Depth for Video Semantic Segmentation. In Submission, 2017.
Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arXiv preprint 1705.07115, 2017.



Learning to see is more than recognition!

My	research	focuses	on	learning	a	richer	scene	
representation	with	end	to	end	deep	learning:
• Semantic	segmentation	(what	is	around	us)
• Instance	segmentation	(where	objects	are)
• Depth	estimation	(how	far	away	objects	are)
• Camera	pose	(where	we	are)
• Optical	flow	(motion	of	objects	in	an	image)
• Video	semantic	segmentation	(where	objects	are	in	video).

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, University of Cambridge, 2017.



Scene Understanding with Deep Learning

2015
• Deep encoder-decoders [SegNet, FCNs]
• Semantic segmentation [HyperColumn, U-Net, CRF-RNN, etc]
• Bounding-box object detection [overfeat, etc]

2016
• Residual architectures [He et al]
• Learning depth and geometry [Eigen & Fergus] 
• Unsupervised learning [Garg et al, Goddard et al, Zhou et al]

2017
• Learning context [PSPNet, Dilation architectures]
• Instance segmentation [Bai et al, Mask R-CNN]
• Multitask learning [Teichmann et al, Kendall et al, Chen et al]



State of the art in 2015 vs 2017

Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla. SegNet: A Deep 
Convolutional Encoder-Decoder Architecture for Image Segmentation.
PAMI, 2015.

Zhao et al. Pyramid Scene Parsing Network. CVPR 2017



Deep Learning for Stereo Vision

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.
Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.

Depth	Prediction Depth	Prediction	Uncertainty

Input	Left	Image Input	Right	Image



Brief History of Stereo Vision

Engineered 
Features (e.g. 

CENSUS)
Cost Volume Regularisation 

(e.g. SGM)
Disparity 

Estimation

Learned Cost (e.g. MC-CNN) Regularisation (e.g. 
SGM)

Disparity 
Estimation

Learned Disparity Regression

J. Zbontar and Y. LeCun. Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. 
JMLR 2016.

N. Mayer et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 
CVPR 2016.

H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and mutual information. CVPR 2005



GC-Net: end to end deep learning for stereo

• Form	differentiable	cost	volume	using	stereo	geometry

• Sub-pixel	disparity	regression	with	soft	ArgMax	function

• Use	3-D	convolutions	to	learn	features	with	large	context

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 2017.



Context-aware

• Saliency	shows	which	part	of	
the	input	signal	affects	
output	prediction

• Demonstrates	the	model	
has	a	large	receptive	field	to	
learn	disparity	with	context

Alex Kendall et al. End-to-End Learning of 
Geometry and Context for Deep Stereo 
Regression. ICCV, 2017.



Geometry with Unsupervised Deep Learning

• We	can	learn	geometric	quantities	like	depth	and	
optical	flow	using	reprojection	error	

• Reprojection	losses	use	epipolar geometry	to	relate	
multi-view	stereo	images

• This	is	unsupervised	learning	or	self-supervised	
learning	(no	requirement	for	labelled	data)

Alex Kendall. Geometry and Uncertainty in Deep Learning for Computer Vision. PhD Thesis, 
University of Cambridge, 2017.



Reprojection loss: biggest breakthrough 2017?

• Monocular	Depth:	Reprojection	loss	for	deep	learning	was	first	presented	for	
monocular	depth	estimation	by	[Garg	et	al.	2016].	[Godard	et	al.	2017]	show	how	to	
formulate	left-right	consistency	checks	to	improve	results

• Stereo	depth:	our	paper	shows	how	to	learn	stereo	depth	with	reprojection	[Kendall	
et	al.	2017]

• Flow:	optical	flow	requires	learning	disparities	over	2D	and	has	been	demonstrated	
by	[Yu	et	al.	2016,	Ren	et	al.	2017]

• Localisation:	reprojecting geometry	from	structure	from	motion	models	for	
localisation	[Kendall	&	Cipolla	2017]

• Ego-motion:	learning	depth	and	ego	motion	with	reprojection	loss	out	performs	
traditional	methods	like	ORB-SLAM	[Zhou	et	al.	2017]





Learning camera pose, with geometry

Train	with	reprojection	loss	of	3-D	geometry	
with	predicted	and	ground	truth	camera	poses.

Where	𝜋 is	the	projection	function	of	3-D	point	𝑔#
Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017.



Scene Understanding Summary

• End-to-end	learning	outperforms	shallow	or	modular	
approaches
•We	need	better	architectures	than	recognition	models	
to	understand	spatial	relationships	&	context
•We	can	leverage	geometry	for	improved	
representations	and	unsupervised	learning



Why is knowing uncertainty useful?

• Safety	&	principled	
decision	making

• Active	learning
• Sensor	fusion
• Multitask	learning



Bayesian SegNet for probabilistic scene 
understanding

Input	Image Semantic	Segmentation Uncertainty



What kind of uncertainty can we model?

Epistemic	uncertainty

• Measures	what	you’re	model	doesn’t	know

• Can	be	explained	away	by	unlimited	data

Aleatoric	uncertainty

• Measures	what	you	can’t	understand	from	the	data

• Can	be	explained	away	by	unlimited	sensing

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



What kind of uncertainty can we model?

Epistemic	uncertainty	is	modeling	uncertainty |		Aleatoric	uncertainty	is	sensing	uncertainty



Modeling Uncertainty with Bayesian Deep 
Learning

• Deep	learning	is	required	to	achieve	state	of	the	art	results	in	computer	
vision	applications	but	doesn’t	provide	uncertainty	estimates.

• Bayesian	neural	networks	are	a	framework	for	understanding	uncertainty	in	
deep	learning

• They	have	distributions	over	network	parameters	(rather	than	
deterministic	weights)

• Traditionally	they	have	been	tricky	to	scale	to	computer	vision	models

MacKay, David JC. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3): 448–472, 1992.



Modeling Epistemic Uncertainty with 
Bayesian Deep Learning

• We	can	model	epistemic	uncertainty	in	deep	learning	models	using	
Monte	Carlo	dropout	sampling	at	test	time.

• Dropout	sampling	can	be	interpreted	as	sampling	from	a	distribution	over	models.

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



Aleatoric	Uncertainty	with	Probabilistic	Deep	Learning

𝑦%, 𝜎%( = 𝑓(𝑥)

𝐿𝑜𝑠𝑠 = 𝑦 − 𝑦% (
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𝐿𝑜𝑠𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦%2)

Deep	Learning Probabilistic	Deep	Learning

Model

Regression

Classification



Semantic Segmentation Performance on CamVid

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.

CamVid Results IoU Accuracy

DenseNet (State of the art baseline) 67.1

+ Aleatoric Uncertainty 67.4

+ Epistemic Uncertainty 67.2

+ Aleatoric & Epistemic 67.5



Aleatoric vs. Epistemic Uncertainty for Out of 
Dataset Examples

• Aleatoric	uncertainty	remains	constant	while	epistemic	uncertainty	
increases	for	out	of	dataset	examples!

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



Conclusions about Modelling Uncertainty

Aleatoric	uncertainty	is	important	for
• Large	data	situations,	where	epistemic	uncertainty	is	explained	away,

• Real-time	applications,	because	we	can	form	aleatoric	models	without	expensive	Monte	Carlo	samples,

• Multitask	applications,	because	we	can	appropriately	weight	each	loss.

Epistemic	uncertainty	is	important	for
• Safety-critical	applications,	because	epistemic	uncertainty	is	required	to	understand	examples	which	are	

different	from	training	data,

• Small	datasets,	where	the	training	data	is	sparse,

• Exploratory	applications,	such	as	loop	closure	and	reinforcement	learning.

1

2

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



Scene Understanding

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry 
and Semantics. arxiv preprint 1705.07115, 2017.



Multi Task Scene Understanding Model

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.

improve performance by learning multiple tasks from a shared representation



Multitask Learning

• We	want	to	simultaneously	learn	multiple	tasks:	

𝐿𝑜𝑠𝑠 =;𝑤#𝐿#

�

#
𝐿𝑜𝑠𝑠 = wMNOPQ5#RM ∗ 𝐿𝑜𝑠𝑠MNOPQ5#RM 	+	wTNU5V ∗ 𝐿𝑜𝑠𝑠TNU5V

• task	performance	is	very	sensitive	to	choice	of	weights,	
how	do	we	select	𝑤#?

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Multi-task learning literature

• Machine	Learning:	Caruana.	Multitask	learning.	Learning	to	learn,	1998
• Computer	Vision:	Kokkinos.	UberNet:	Training	a	universal	convolutional	
neural	network	for	low,	mid,	and	high-level	vision	using	diverse	datasets	
and	limited	memory.	CVPR,	2017.

• Natural	Language	Processing:	Collobert and	Weston.	A	unified	architecture	
for	natural	language	processing.	ICML,	2008.

• Speech	Recognition:	Huang	et	al.	Cross-language	knowledge	transfer	using	
multilingual	deep	neural	network	with	shared	hidden	layers.	ICASSP,	2013.

• All	previous	methods	use	uniform	or	manually	tuned	weights



Importance of task weights

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Observations about task weights

Varies	with:
• units	(e.g.	mm,	m,	km)
• difficulty	given	model’s	capacity	(e.g.	4	class	vs.	20	class	segmentation)

Our	insight	is	to	weight	tasks	by	their	uncertainty
• The	variance	of	the	residuals	for	a	given	task	represents	both	magnitude	
and	difficulty

• Reduce	task	weight	with	increasing	uncertainty

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



Estimating variance using maximum likelihood

𝐿𝑜𝑠𝑠 =
𝑦 − 𝑦W (
2𝜎(

+ log 𝜎

If	𝜎( is	a	model	output	àHeteroscedastic	uncertainty

Alternatively,	if	𝜎( doesn’t	depend	on	input	dataà Homoscedastic	uncertainty
ØWe	interpret	homoscedastic	uncertainty	as	‘task	uncertainty’

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS, 2017.



Combining Losses Using Homoscedastic 
Uncertainty

• Homoscedastic	uncertainty,	σ2,	captures	uncertainty	of	the	entire	task	itself	
– not	dependant	on	input	data.

• We	propose	to	use	this	to	learn	a	weighting	for	each	loss	term.

𝐿𝑜𝑠𝑠 =
𝐿XNYXNMM#ZQ	[

2𝜎[(
+ log 𝜎[ 		+		

𝐿XNYXNMM#ZQ	(
2𝜎((

+ log 𝜎( 		+ 		𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦
𝑦
2𝜎\(

Depth Regression Instance Regression Semantic Segmentation

Regularizes homoscedastic 
uncertainty from going to infinity

Learnt uncertainty 
tempers each loss term

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Multitask Learning Results

• Multitask	learning	improves	performance	compared	to	separate	models	for	each	task

Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Semantics, Geometry and Motion

Alex Kendall and Roberto Cipolla. VideoSegNet: Self-Supervised Motion and Depth for Video Semantic Segmentation. In Submission, 2017.



Wayve

• We’re	working	on	a	new	approach	to	
autonomy	using	machine	learning

• Well	funded	with	a	focus	on	product-
driven	research

• If	you’re	interested	in	joining	an	explosive	
early	stage	start-up,	get	in	touch!

• We’re	looking	for	computer	vision,	
reinforcement	learning	researchers,	
roboticists	and	software	engineers

• https://wayve.ai/



Thank you and references

alexgkendall.com/publications/

@alexgkendall

alex@wayve.ai
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