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Why is uncertainty important?




Bayesian SegNet for probabilistic scene understanding

Input Image Semantic Segmentation Uncertainty



Outline of Talk

1. What uncertainty can we model with deep learning and what

are the benefits?

2. How do we model uncertainty using Bayesian deep learning

for regression and classification tasks?

3. Why should we formulate deep learning models for vision

which leverage our knowledge of geometry?



Uncertainty




What kind of uncertainty can we model?

© Epistemic uncertainty
» Measures what you're model doesn’t know

» Can be explained away by unlimited data

© Aleatoric uncertainty
« Measures what you can't understand from the data

 Can be explained away by unlimited sensing

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



What kind of uncertainty can we model?

Epistemic uncertainty is modeling uncertainty
Aleatoric uncertainty is sensing uncertainty

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty




Modeling Uncertainty with Bayesian Deep Learning

Deep learning is required to achieve state of the art results in computer vision
applications but doesn't provide uncertainty estimates.
- Bayesian neural networks are a framework for understanding uncertainty in deep learning

* They have distributions over network parameters (rather than deterministic weights)

 Traditionally they have been tricky to scale

MacKay, David JC. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3): 448-472, 1992.



Modeling Epistemic Uncertainty with Bayesian Deep Learning

We can model epistemic uncertainty in deep learning models using

Monte Carlo dropout sampling at test time.

Dropout sampling can be interpreted as sampling from a distribution over models.
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Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for
Scene Understanding. arXiv preprint arXiv:1511.02680, 2015.




Modeling Aleatoric Uncertainty with Probabilistic Deep Learning

Deep Learning Probabilistic Deep Learning
Model [F1=7) [9,6%] = f(x)
. ly = 31I° .
Regression Loss = |ly — 3| Loss ===+ log 6

Vo=V +e€ e; ~ N(0,6%)
Classification | Loss = SoftmaxCrossEntropy(9;)

1
Loss = T z SoftmaxCrossEntropy(y;)
t

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



Semantic Segmentation Performance on CamVid

DenseNet (State of the art baseline) 6/
+ Aleatoric Uncertainty 6/.4
+ Epistemic Uncertainty o/.2

+ Aleatoric & Epistemic 67.5

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



Monocular Depth Regression Performance

DenseNet (State of the art baseline) 0
+ Aleatoric Uncertainty 0
+ Epistemic Uncertainty 0.162
+ Aleatoric & Epistemic 0

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



Predicted Depth ' | Uncertamty



Aleatoric vs. Epistemic Uncertainty for Out of Dataset Examples

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance variance
Make3D /4 | Make3D | 5.76 0.506 7.73
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

G Aleatoric uncertainty remains constant while epistemic

uncertainty increases for out of dataset examples!

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



Uncertainty Benchmarks

* One reason why computer vision has progressed so rapidly is because we can

benchmark and compare algorithms easily
 Often leaderboards rank prediction accuracy and algorithm speed

* Leaderboards should also rank algorithms probabilistically and quantify

uncertainty accuracy



Cali

bration Plots

* For a prediction with probability p, the model should be correct with a frequency of p

* Perfect calibration corresponds to the line, y = x
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(b) Classification (CamVid)

- Non-Bayesian, MSE = 0.00501

- Aleatoric, MSE = 0.00272

= Epistemic, MSE = 0.007

= Epistemic+Aleatoric, MSE = 0.00214

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.




Precision Recall Plots

 Uncertainty should correlate well with accuracy

Precision
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Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.




Putting it all Together: Multi-Task Learning




Multitask Learning

We want to simultaneously learn multiple tasks:  Loss = );; w;L;

Task performance is very sensitive to choice of weights, so how do you choose??
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[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.
[2] Alex Kendall, Matthew Grimes and Roberto Cipolla PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.



Types of Aleatoric Uncertainty

© Heteroscedastic aleatoric uncertainty
 Data dependent aleatoric uncertainty

© Homoscedastic aleatoric uncertainty
* Aleatoric uncertainty which doesn’t depend on the data

* Task uncertainty

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.



Combine Losses Using Homoscedastic Uncertainty

Homoscedastic uncertainty, o2, captures uncertainty of the entire task itself — not dependant on input data.

We propose to use this to learn a weighting for each loss term.
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infinity

Learnt uncertainty
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[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Multi Task Scene Understanding Model
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[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.




Multitask Learning Results

Homoscedastic uncertainty can learn the optimal weighting

Multitask learning can improve performance compared with training separate models for each

individual task

Task Weights Classification Instance Inverse Depth

Loss Cls. Inst.  Depth IoU [%] RMS Error [pz] | RMS Error [px]
Class only 1 0 0 43.1% - -
Instance only 0 1 0 - 4.61 -
Depth only 0 0 1 - - 0.783
Unweighted sum of losses | 0.333 0.333 0333 |  43.6% | 3.92 | 0.786
Approx. optimal weights | 0.8 005 015 | 463% | 3.92 | 0.799

2 task uncertainty weighting v 46.5% 3.73 -

2 task uncertainty weighting v v 46.2% - 0.714

2 task uncertainty weighting v - 4.06 0.744

3 task uncertainty weighting | v v v | 46.6% | 3.91 | 0.702

[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Qualitative Multitask Learning Results

(a) Input image (b) Segmentation output (c) Instance output (d) Depth output

[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.



Geometry




Geometry in Computer Vision?

« Geometry was once the most exciting topic in computer vision Multple View
seometry

in computer vision

* Now machine learning models are the solution to most tasks

» These black boxes can learn many representations with end-to-

end supervised learning

e Often naive architectures are used




Geometry in Computer Vision?

« However, geometry provides a rich source of training data

Multiple View
Geometry

in computer vision

« Motion, pose and depth can be leveraged for supervised and

unsupervised training

» Geometric priors and architectural designs can

significantly improve model performance




Naive deep learning approach to learning camera pose

Convolutional
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Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.




Camera Pose Regression

training data in green, test data in blue, PoseNet results in red

Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.



Learning camera pose, with geometry

Train with reprojection loss of 3-D geometry

with predicted and ground truth camera poses.

1
|G']

lOSS(I) — Z ”T[(q’xa gl) - T((q, i? gl)”'y

gi€G’

Where 1 is the projection function of 3-D point g;

Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017 (to appear).



Camera Pose Regression

Using geometry in our model structure improves performance

Spatial PoseNet Bayesian PoseNet PoseNet v2 (this work)
Scene Extent (GoogLeNet, L2) [*0)] (GoogLeNet, L2) [!Y] (ResNet, L1+reprojection)
King’s College 140 x 40m 1.66m, 4.86° 1.74m, 4.06° 0.92m, 0.83°
Street 500 x 100m 2.96m, 6.00° 2.14m, 4.96° 1.32m, 1.57°
Old Hospital 50 x 40m 2.62m, 4.90° 2.57m, 5.14° 1.12m, 1.83°
Shop Facade 35 x 25m 1.41m, 7.18° 1.25m, 7.54° 0.72m, 0.93°
St Mary’s Church | 80 x 60m 2.45m, 7.96° 2.11m, 8.38° 1.62m, 1.84°
Average 2.22m, 6.18° 1.96m, 6.02° 1.14m, 1.40°
Chess 3x2x1m 0.32m, 6.60° 0.37m, 7.24° 0.12m, 3.24°
Fire 25x1x Im 0.47m, 14.0° 0.43m, 13.7° 0.13m, 4.20°
Heads 2x0.5x1m 0.30m, 12.2° 0.31m, 12.0° 0.08m, 5.72°
Office 2.5x2x1.5m 0.48m, 7.24° 0.48m, 8.04° 0.16m, 2.38°
Pumpkin 25x2x1Im 0.49m, 8.12° 0.61m, 7.08° 0.14m, 2.15°
Red Kitchen 4x3x1.5m 0.58m, 8.34° 0.58m, 7.54° 0.16m, 4.24°
Stairs 2.5x2x1.5m 0.48m, 13.1° 0.48m, 13.1° 0.18m, 4.86°
Average 0.45m, 9.94° 0.47m, 9.81° 0.14m, 3.83°

Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017 (to appear).




Epistemic uncertainty to estimate loop closure

o We can use o : - Determine if the
2. epistemic 5. D model has seen the
3, . : unt;ert?mty o | Ea R : landmark before
S, . . e Im Tis :
=N CSHMAte 8" (loop closure)

S0 anhic L. metric S10
8. e relocalisation : 2
g eror
: 4PoseitiorE;aI I1EOrro1r2[mi4 e

Increased uncertainty from strong occlusion, maotion blur, visually ambiguous landmark

Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for Camera Relocalization. ICRA, 2016.



End to end deep learning for stereo vision

Form differentiable cost volume and sub-pixel regression network with soft argmax function

Use 3-D convolutions to learn to regularise the volume
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Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.



Soft ArgMin / ArgMax
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Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.



Scene Flow Dataset Results

(c) Scene Flow test set qualitative results. From left: left stereo input image, disparity prediction, ground truth.

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.



Probabilistic Deep Learning for Stereo Vision

Input Left Image Input Right Image

Depth Prediction Depth Prediction Uncertainty

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.
Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.



15t Place on the 2012 & 2015 KITTI Stereo Challenge

3 The KITTI Vision Benchr X

< C 0 | ® www.evlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

The KITTI Vision

Benchmark Suite

A project of Karlsruhe Institute of Technology ) C 5
and Toyota Technological Institute at Chicago 2ICA Karlsruhe Institute of Technology

home setup ['stereo flow sceneflow odometry object tracking road semantics rawdata submit results jobs

Andreas Geiger (MPI Tubingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (University of Toronto)

Stereo Evaluation 2015

Method Setting Code : D1-bg D1-fg D1-all Density Runtime Environment Compare
1 GC-NET 2.21 % 6.16 % 2.87 %  100.00 % 0.9s Mvidia GTX Titan X (&)
A Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A, Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint arxiv: 1703.04309 2017.
2 DRR . 258% i 6.04%  3.16% . 100.00 0.45 Nvicia GTX Titan X O

3 L-ResMatch code 272%  6.95% 3.42% 100.00% @ 485 I core @ 2.5 Ghz (C/C++) @
A, Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arkiv preprint arxiv:1701.00165 2016.

4 | Displets v2 ‘code | 3.00% | 556% 3.43% | 100.00% | 2655 | 8 cores @ 3.0 Ghz (Matlab + C/C++) O
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.

5 CNNF:SGM L 2.78% | 7.69%  3.60%  100.00% | 71s TESLA K40C @

6 PBCP L 258% | 8.74%  3.61%  100.00% | 68s Nvidia GTX Titan X O
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.

7 SN L 2.66% | B.64%  3.66% 100.00% 675 Titan X 0

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.



Autonomous Drone Prototype

Skydio Inc.  http://www.skydio.com/




Conclusions

© Aleatoric uncertainty is important for
» Large data situations, where epistemic uncertainty is explained away,

» Real-time applications, because we can form aleatoric models without expensive Monte Carlo
samples,

« Multitask applications, because we can appropriately weight each loss.

© Epistemic uncertainty is important for

- Safety-critical applications, because epistemic uncertainty is required to understand examples which
are different from training data,

« Small datasets, where the training data is sparse,

« Exploratory applications, such as loop closure and reinforcement learning.



Conclusions

© it is important to quantify the accuracy of uncertainty

estimates

© \We should leverage our knowledge of geometry when

designing machine learning models for computer vision

* Reprojection 0ss

e Stereo cost volume



C \/ P R TU to rl a | B Place Recognition & Loc X i - o0 X

C 0 | & Secure | https:/sites.google.com/view/Isvpr2017/home w m® O ¢

= Place Recognition & Localization Home Organizers Syllabus  References
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See you there?
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